
NCS TIB 95-4

NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN 9S4

TAMI MODEL
PROGRAMMER'S GUIDE

VOLUME I

?OS Bg&'BaaSKT E i
FOR OPEN Pimr':,,.., .-.,,

MAR 0 6 1996 Q

JUNE 1995 DiRB:Sl^;;M^-:
Dr Vs-',' /'■'"v

OFFICE OF THE MANAGER
NATIONAL COMMUNICATIONS SYSTEM

701 SOUTH COURT HOUSE ROAD
ARLINGTON, VA 22204-2198

I
DTIC QUALH^ INSFM,!*

%-J" 097^

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1995
3. REPORT TYPE AND DATES COVERED

Final Report
4. TITLE AND SUBTITLE

TAMI Model Programmer's Guide Volume I

6. AUTHOR(S)

Andre Rausch

5. FUNDING NUMBERS

DCA100-91-C-0015

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Booz, Allen & Hamilton, Inc.
8283 Greensboro Drive
McLean, Virginia 22102

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Communications System
Office of Technology and Standards Division
701 South Court House Road
Arlington, Virginia 22204-2198

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NCS TIB #95-4

w^r
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
As part of the ongoing effort to analyze the performance of the public switched
network (PSN) and the programs of the National Level National Security and Emergency
Preparedness (NS/EP) Telecommunications Program, Office of Technology and Standards
Division (N6) has developed a number of computer-based models. The Traffic Analysis
by Method of Iteration (TAMI) model was developed to measure the effects of telecom-
munications traffice congestion in stressed local and long distance networks. This
document provides the first of two volumes of the TAMI Programmer's Manual. Together
these volumes provide the software description necessary for a programmer to support
future maintenance and enhancements to the TAMI model. The TAMI User's Manual
provides the information for users who wish to operate the model. Volume I documents
the first 11 of 23 modules that form the TAMI model. It is assumed that the reader
has a basic understanding of the PSN and working knowledge of the architectures of the
three major inter-exchange carrier networks (IEC) and the local exchange carrier (LEC)
A programmer using TAMI should have a working knowledge of the UNIX operating system
and the 'C' and FORTRAN programming languages. Background in voice teletraffic
engineering and analytical modeling and simulation is desirable.
14. SUBJECT TERMS
Inter-Exchange Carrier (IEC)
Local Exchange Carrier (LEC)
Public Switched Network (PSN)

15. NUMBER OF PAGES

130
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASS

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASS

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASS

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500
UiV K^ ,ii.u A

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Blocke. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block?. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block,10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categorie

NASA
NTIS

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.
Leave blank.
Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

NCS TIB 95-4

NATIONAL COMMUNICATIONS SYSTEM

TECHNICAL INFORMATION BULLETIN 95-4

TAMI MODEL
PROGRAMMERS GUIDE

VOLUME I

JUNE 1995

OFFICE OF THE MANAGER
NATIONAL COMMUNICATIONS SYSTEM

701 SOUTH COURT HOUSE ROAD
ARUNGTON, VA 22204-2198

NCS TFCHNTCAI INFORMATION RLJI I FTTN QS-4

TAMI MODEL
PROGRAMMER'S GUIDE

VOLUME I

JUNE 1995

PROJ APPROVED FOR PUBLICATION:

A|tOR£ RflÜSCH
Electronics Engineer
Offite of Technology

and Standards

<§K l^vwi^ (ß&JUe^
DENNIS BODSON
Assistant Manager
Office of Technology
and Standards

FOREWORD

The National Communications System (NCS) is an organization of the Federal
Government whose membership is comprised of 23 Government entities. Its
mission is to assist the President, National Security Council, Office of
Science and Technology Policy, and Office of Management and Budget in:

o The exercise of their wartime and non-wartime
emergency functions and their planning and oversight
responsibilities.

o The coordination of the planning for and provisions of
National Security/Emergency Preparedness
communications for the Federal Government under all
circumstances including crisis or emergency.

In support of this mission, the NCS has conducted studies and analyses to
assess the potential for serious damage to portions of the Nation's
telecommunications infrastructure due to various threats. The purpose of the
work is to provide guidance to programmers on the TAMI module structure.

Comments on this TIB are welcome and should be addressed to:

Office of the Manager
National Communications System
Attn: NC-TS
701 S. Court House Road
Arlington, VA 22204-2198

TABLE OF CONTENTS

TAMI Model Programmer's Guide, Part I

1.0 Introduction 1-1

2.0 High Level TAMI Description 2-1

3.0 Module Descriptions 3-1
3.1 Documentation Conventions 3-2
3.2 cg_make: Make Circuit Groups Module 3-4

3.2.1 make_cgs 3-6
3.2.2 nodejind 3-7

3.3 span_make: Make Spans Module 3-8
3.3.1 make_spans 3-10
3.3.2 makejink 3-11
3.3.3 node_find 3-13
3.3.4 return_type 3-14

3.4 array_make: Array Make Module 3-15
3.4.1 make_array 3-17
3.4.2 makejink 3-18

3.5 mk_ncam_path: Make Paths Module 3-20
3.6 mat_trk: Match Trunks module 3-24

3.6.1 openfiles 3-29
3.6.2 loadswitches 3-30
3.6.3 loadtrunks 3-31
3.6.4 processpaths 3-33
3.6.5 processtrunks 3-35
3.6.6 getsize_oneway 3-36
3.6.7 getsize 3-37
3.6.8 getswidx 3-38
3.6.9 outprint 3-39

3.7 rem_dups: Remove Duplicate Records Module 3-40
3.8 sort_paths: Sorting of path file module 3-43
3.9 clli3_4: Location to Switch Code Conversion module 3-45

3.9.1 openfiles 3-48
3.9.2 readmappings 3-49
3.9.3 createpathfile 3-50
3.9.4 closefiles 3-52

3.10 mkpath: Make Path module 3-53
3.10.1 openfiles 3-56
3.10.2 readswitches 3-57
3.10.3 createpathfile 3-58
3.10.4 closefiles 3-59

3.11 damage: Monte Carlo Damage module 3-60
3.11.1 LoadKey 3-67
3.11.2 LoadCDF 3-68
3.11.3 LoadSuppCDF 3-69
3.11.4 DmgNode 3-70
3.11.5 PrintNodeStats 3-72
3.11.6 DmgSpan 3-73
3.11.7 PrintSpanStats 3-75
3.11.8 TallyUnknown 3-76
3.11.9 Survive 3-77

3.11.10 detprb 3-78
3.12 mklink: Make Link module 3-80

3.12.1 openfiles 3-84
3.12.2 readswitches 3-85
3.12.3 readspans 3-86
3.12.4 createlink 3-88
3.12.5 closefiles 3-90

Appendix A: ICF File Format Descriptions A-1

Appendix B: User-Defined Utility Functions B-1

List of Acronyms

List of References

1.0 Introduction

The Office of the Manager, National Communications System (OMNCS) Office of Technology and
Standards (NT) is responsible for a broad range of initiatives including Federal telecommunications
standards development, network performance analyses, and technology review. As part of the ongoing
effort to analyze the performance of the public switched network (PSN) and the programs of the National
Level National Security and Emergency Preparedness (NS/EP) Telecommunications Program (NLP), NT
has developed a number of computer-based models. Most recently, the Traffic Analysis by Method of
Iteration (TAMI) model was developed to measure the effects of telecommunications traffic congestion in
stressed local and long distance networks.

1.1 Purpose

This document provides the first of two volumes of the TAMI Programmer's Manual. Together,
these volumes provide the software description necessary for a programmer to support future
maintenance and enhancements to the TAMI model. A separate document, the TAMI User's Manual,
provides the information necessary for users who wish to operate the model.

1.2 Scope

Volume I of the TAMI Programmer's Manual documents the first 11 of 23 modules that form the
TAMI model. It is assumed that the reader has a basic understanding of the PSN and a working knowledge
of the architectures of the three major inter-exchange carrier networks (IEC) and the local exchange carrier
networks (LEC). Furthermore, a programmer using TAMI should have a working knowledge of the UNIX
operating system and the 'C and FORTRAN programming languages. A background in voice teletraffic
engineering and analytical modeling and simulation is desirable to understand the algorithmic details of
the TAMI model. The TAMI programmer will find it useful to be familiar with the references provided at the
end of this document, which describe previous TAMI analyses, modeling concepts, algorithms, and
programmer's manuals of related software.

1.3 Background

The nation's PSNs continue to be a focus of NCS modeling efforts because these networks
comprise the largest, most diverse set of telecommunications assets in the United States. Furthermore,
the NCS directs its NS/EP telecommunications enhancement activities toward the PSN. Additionally,
most NCS member organizations rely on the PSN for conducting their NS/EP responsibilities.

The NCS has moved to measuring network performance using call completion probability in
addition to connectivity because this approach captures the effects of traffic congestion. Traffic
congestion is prevalent during many of the national emergencies and disasters of concern to the OMNCS.

In support of PSN traffic congestion analyses, NT has developed the TAMI model. This model is
only intended for use in networks stressed by physical damageand/or traffic overload. This model
measures congestion in the combined local and long-distance networks of the PSN. TAMI evaluates
congestion for ordinary telephone users and for NS/EP users who benefit from planned or existing NLP
enhancements. In addition to measuring nationwide congestion, the TAMI model has been expanded to
model regional congestion caused by focused overloads. Focused overloads are common during events
that only affect part of the country, such as earthquakes and hurricanes, during which the affected region
may be subject to unusually high volumes of traffic originating from the rest of the country. As the TAMI
model continues to evolve, it provides a more accurate tool for understanding the effects of congestion in
the PSN.

The TAMI model has been used by both NT and the Office of Plans and Programs (NP) to
measure congestion in the PSN subject to damage from electromagnetic pulse (EMP), fallout radiation,
nuclear blast scenarios, and, more recently, earthquakes. An analysis has successfully been conducted
to determine the sensitivity of the model's network performance results to network management and

1-1

engineering assumptions made in the absence of complete PSN data. In view of continued plans to
employ and enhance the TAMI model, this document provides the first of two Programmer's Manual
volumes. These volumes will be supplemented by a User's Manual.

1.4 Organization

This report is organized into three sections. Section 1.0 provides an introduction, describing the
purpose, scope, background, and organization.

Section 2.0 provides a high level overview of the TAMI model and describes the
interrelationships, data flow, and interfaces among of the eleven software modules encompassed by this
report.

Section 3.0 contains detailed documentation of the first 11 TAMI software modules and each
module's component functions.

1-2

2.0 High Level TAMI Description

This section provides a high level overview of the TAMI Model from a programming viewpoint. A
number of NCS reports already exist which describe the TAMI algorithms, assumptions, and modeling
techniques (References 2, 3, 5, 6). The purpose of this overview is to focus on the interrelationships,
data flow, and interfaces among the software modules that constitute the TAMI model.

The TAMI model can be divided into six main functional processes, depicted in Exhibit 2.1. Each
of these processes operate on both IEC and LEC data and can be described at more detailed levels.

Exhibit 2.1
TAMI High-Level Flow Diagram

CD Monte Carlo Sampling Loop)

(l) Pre-Process
Undamaged

Network and Traffic

©
I

Generate Pool
of Damage Vectors

© Pre-Process
Damaged Network

and Traffic

\2) Perform
Blockage Calculations

(Main TAMI Algorithm)

m Post-Process
Analysis Results

:m>s

In addition to QTCM, which has been previously documented as a stand-alone model, there are
23 TAMI modules totaling an estimated 30,000 lines of code. Exhibit 2.2 identifies each of these
modules, categorized by the six functional areas above. It also provides the approximate lines of code for
each module and indicates whether it appears in Volume I or Volume II of the TAMI Model Programmer's
Manual. As shown, Volume I encompasses the pre-processing of the undamaged IEC networks and the
generation of sampling pools of EMP damage vectors. These two functional areas are discussed in more
detail in Sections 2.1 and 2.2 respectively. Exhibits 2.3 and 2.4 provide a diagrammatic road map to these
sections, depicting the overall data flow for AT&T, MCI, and Sprint network data through the Volume I
modules.

2-1

Exhibit 2.2
Table of TAMI Modules

Functional Area Within TAMI

Pre-Process Undamaged Network and Traffic
I EC Networks

Module Name Approx Lines Vol I Vol II
of Code

LEC Networks and
End-to-End Traffic Matrix

cgjnake
span_make
arrayjnake
mk_ncam_path
rem_dup
sort_path
3ch_4ch
matchjrunk
mkpath

attlive
mcilive
sprlive

200
300
200

4800*
200
130
200
830
275

900
1300
1300

/
/
/
/
/
/
/
/
•

/
/

Generate Pool of Damage Vectors damage
mklink

1600
500

/
/

Monte Carlo Sampling Loop tami

Pre-Process Damaged Network and Traffic
I EC Networks

LEC Networks and
End-to-End Traffic Matrix

mkrout
qtrans_gen

attwdmg
mciwdmg
sprwdmg
merge

650

700
800

2300
2300
2300
850

/
/

/
/
/
/

Perform Blockage Calculations
LEC Networks
I EC Networks

lecam
qtcm

4500
N/A N/A

/
N/A

Post-Process Analysis Results keepstats 300 /
Includes code linked from IDA/CAM model, Reference 4

2-2

Exhibit 2.3
AT&T and Sprint Data Flow Through Volume I TAMI Modules

node_dat.icf

link_dat.icf

node_dat.icf

link_dat.icf

node_dat.icf

link_dat.icf

cg_dat.icf

pid_dat.icf

cg_dat.icf

node_dat.icf

span_make |-

array_make

T
Link Array File
array_make.out

1
mk_ncam_path

SpanType File
span_make.out

Switch File
switch.dat

Switch File
switch.dat

Path File
mk_ncam_path.out

Trunk Size File
cg_make.out

Switch File
switch.dat

Span Damage File
span_dam.dat

Switch Damage File
switch dam.dat

mattrk

n
Matched Trunk File

mat_trk.trk.out
Matched Path File
mat_trk.path.out

LI
mkpath

T
Path/Trunk File

mkpath.out

I Damaged IEC File f
mklink.out

2-3

Exhibit 2.4
MCI Data Flow Through Volume I TAMI Modules

node_dat.icf

link_dat.icf

node_dat.icf

link dat.icf

node_dat.icf

link_dat.icf

cg_dat.icf

pid_dat.icf

Link Array File
array_make.out

Location-to-Location
Path File

mk_ncam_path.out

1
rem_dup

sort_path

T
Location-to-Location
Path File (filtered)
sort_path.3ch.out

Switch/Location File
swloc.map —'

Switch-to-Switch
Path File

3ch 4ch.out —

SpanType File
span_make.out

Switch File
switch.dat

cg_dat.icf

node dat.icf

Trunk Size File
cg_make.out

Switch File
switch.dat

Switch-to-Switch
Path File (filtered)
rem_dup .4ch.out

1
remjdup

sort_path

Span Damage File
span_dam.dat

Switch Damage File
switch dam.dat

_L__

mklink

T
Path/Trunk File

mkpath.out

Switch File
switch.dat

Matched Trunk File
mat_trk.trk.out

Matched Path File
mat_trk.path.out

./
| Damaged IEC File j
I mklink.out \

2-4

2.1 Pre-processing the Undamaged IEC Networks

There are three goals to this stage: (1) to reformat the IEC data from ICF format (see Appendix A)
into a format usable by TAMI, (2) to address data anomalies or gaps, and (3) to produce a mapping
between the physical and logical IEC network descriptions. This section describes each of the nine
modules used to perform the pre-processing objectives on the undamaged IEC networks. Because each
IEC data set has unique anomalies, some modules provide the option to specify the IEC or were designed
to be run only on a specific carrier's data.

The first four modules, cg_make, span_make, array_make, and mk_ncam_path, are designed to
reformat the ICF files so they can be used by TAMI. Each of these modules is generic (i.e. runs the same
on each IEC) and uses hard coded input and output file names. The four ICF input files are as follows (see
Appendix A for further description):

node_dat.icf describes all IEC network nodes, including switches, repeaters, etc.
Iink_dat.icf describes the links (or spans) between nodes
cg_dat.icf describes the logical circuit groups (trunk groups) in the IEC backbone
pid_dat.icf identifies the physical transmission paths (chains of spans) that connect

the backbone switches

Each of these four modules is described:

cg_make: This module uses the cg_dat.icf and node_dat.icf files to decode the ICF's
numerical circuit group format into an easy-to-read trunk group file based on
standard CLLI codes. It outputs a file called 'cg_make.out.' For Sprint only,
the circuit groups in the 1993 ICF files were maintained as DS1s. A standard
UNIX utility called 'nawk' was used to multiply to trunk size field by 24 to
convert to DSOs.

span_make: This module uses the node_dat.icf and link_dat.icf files to produce a span
type file in the format traditionally used for NCAM EMP damage. Span types,
such as fiber optic, microwave, and T1, are converted from the codes used in
ICF to the equipment type codes used for EMP damage. Span_make
produces the output file 'span_make.out.'

array_make: This module almost the same as span_make, except that the output span file
it produces is stored in an indexed numeric format in a binary file. This output
file, 'array_make.out,' is read by mk_ncam_path to assist it in building paths
from spans.

mk_ncam_path: This module uses all four ICF files as well as the output file from array_make to
build a physical transmission path file in the format used by TAMI. This output
file is called 'mk_ncam_path.out.'

The next three modules, rem_dup, sort_path, and 3ch_4ch, were designed specifically to address
anomalies in MCl's 1993 path data. Each of these modules performs a specific data filtering step on the
'mk_ncam_path.out' file as described below:

3ch_4ch: MCl's 1993 path data does not use 4 character switch codes as endpoints,
but uses 3 character location codes. (This characteristic has been changed in
more recent versions of the data, so 3ch_4ch may not be needed in the
future.) Because some locations house more than one switch, a path that
ends at such a location implies a multiplicity of paths to each switch in the
building. This module addresses this data anomaly by mapping each
location-to-location path record to all possible combinations of switch-to-
switch path records. In addition to the location-to-location input path file, it
uses a list of 4 character switches and corresponding 3 character location

2-5

codes to produce the output switch-to-switch path file. All of these files have
user-specified names.

rem_dup: MCl's 1993 path data contains a number of duplicate records which
needlessly enlarge the size of the 'mk_ncam_path.out' file. Rem_dup
compares each path record to the previous two records to remove adjacent
duplicates. The resulting output file has a user-specified name (usually called
Yem_dup.out'), and is used as the filtered path file for subsequent steps. To
fully prevent the possibility of duplicate records, this module is run on both
the location-to-location path file (prior to 3ch_4ch) and on the switch-to-
switch path file output by 3ch_4ch.

sort_path: This module sorts the records in the path file alphabetically by the CLLI codes
of the originating and terminating path endpoints in order to group paths
between the same switches. Subsequent modules expect the path file to be
ordered in this manner. The resulting output file has a user-specified name
(usually called 'sort_path.out'), and is used as the filtered path file for
subsequent steps. Sort_path is run together with rem_dup on both the
location-to-location path file (prior to 3ch_4ch) and on the switch-to-switch
path file output by 3ch_4ch.

The final two modules, matjtrk and mkpath, perform the task of mapping the logical trunk groups
to the physical transmission paths. The final output file combines logical and physical network data to
describe the number of trunk groups per path. This trunk group per path breakdown facilitates the later
task of determining the impact of a damaged path on the overall trunk group capacity between two
switches. In this manner, physical damage can be correlated to reduced network capacity. Matjtrk and
mkpath are described as follows:

mat_trk: This module divides trunk group quantities among the physical paths. For
example, if there are 72 trunks (3 DS1s) in the trunk group from switch A to
switch B, and three distinct physical paths between A and B, matjrkassigns
24 trunks to each physical path. Each record in the output trunk group file will
therefore have a one-to-one correspondence with paths in the output path
file. Matjrk also checks path and trunk group endpoints against a list of
backbone switches to make sure that only paths and trunk groups that
originate and terminate within the toll network are used. Matjrk addresses
cases where there are mismatches between the trunk group file and the path
file-where either a trunk group exists without a corresponding path, or a path
exists without a corresponding trunk group.

mkpath: The mkpath module combines each record of the matjrk output trunk file to
the corresponding record in the matjrk output path file. In the process, it
replaces the CLLI codes of the endpoint switches with index numbers into
the switch list. This step optimizes future processing tasks. The output file is
a combined and indexed trunk group/path file, given a user-specified name.

2.2 Generating Damage Vectors

A damage vector can be thought of as one random instance, or scenario, of possible network
damage. Given the probabilities of failure of each network component, such as switches and spans
(including endpoint nodes such as repeaters), it is possible to generate many different damage vectors,
where each network component is identified as being in either the damaged or undamaged state. Since
each damage vector is based on a common set of probabilities, they will all tend to have similar average
levels of damage. However, each vector represents a slightly different, random outcome that could occur.

As described in previous TAMI analyses (References 2,3,5), TAMI uses a Monte Carlo approach,
sampling as many damage vectors as needed to reach a suitable confidence level in overall network

2-6

performance results. This section describes the two modules, damage and mklink, that generate the pool
of damage vectors from which the modules in the Monte Carlo loop sample. Damage is generic to both
LEC and IEC spans and nodes, whereas mklink is specific to IECs-it maps the effect of damaged
component spans and nodes to the long-haul transmission paths in these networks. While the specific
version of damage described in this document calculates telecommunications damage due to EMP and
fallout radiation, future versions of this module may be developed to characterize damage due to other
threats, such as earthquakes, floods, or hurricanes.

The modules damage and mklink are described as follows:

damage:

mklink:

This module generates a user-defined number of randomly sampled damage
vectors for two general categories of assets: nodes and spans. Damage is
based on the susceptibility of each equipment type to EMP or fallout
radiation. Each span and node equipment type has a cumulative distribution
function (CDF) which defines the equipment's probability of failure. The input
span or node files must have a field describing equipment type. In the output
span or node file, this field will be replaced with the string of damage vectors-
one 0 or 1 for each damage vector requested. It is most common to generate
a pool of 15 damage vectors for each type of damage (low, medium, and high
EMP intensity).

The mklink module generates pools of damaged IEC paths based on the
component span and node damage files produced by damage. It uses the
combined trunk/path file and the span and node damage files as input. It
steps through the endpoint nodes and the chain of spans that make up each
path, checking each component to determine if the overall path is damaged
or surviving. The path's list of spans are replaced by the string of damage
vectors in the output file.

2-7

3.0 Module Descriptions

This section describes the first 11 TAMI modules. Overall documentation is provided for each module,
followed by detailed documentation of each component function. Secion 3.1 describes the
documentation conventions used in the sections that follow. Many of these conventions were adopted to
make the documentation independent of the details of 'C syntax

3-1

3.1 Documentation Conventions

This manual documents modules and functions coded in the 'C programming language. Throughout the
manual certain conventions which may differ slightly from standard 'C terminology have been adopted in
order to more clearly describe data types, inputs, outputs, includes and file types . In addition the
courier font is used to denote module elements such as variable names, file names, call syntax, etc....

Variable names are defined by the following conventions :
Convention Example Definition
character c The standard 'C data type char
integer i The standard 'C data type int
float real The standard 'C data type float
long inteqer pos The standard 'C data type long
file outfile The standard 'C data type FILE, a

pointer to a file strinq
extern optarg The standard 'C data type

modifier extern indicating the
variable is declared outside the
module (e.g., the operating
system)

global idx_num Variables that are declared
globally accessible from any
function

double supp_cdf_table[] [] The standard 'C double
precision float data type

pointer *varname Denotes a pointer to any variable,
varname

Constants PATH REC The standard 'C #define
structure p_struct p[]

with field
integer p []. three

The standard 'C aggregate,
heterogeneous hierarchical data
structure composed of a main
variable name and sub fields of
multiple data types

Inputs/Outputs are defined by the following conventions:

Inputs are of two types: 1) formal inputs are passed in by the calling function; 2) global inputs are variables
as defined above.

Outputs are of three types: 1) the formal parameter is returned tby he called function; 2) arguments that
are passed by reference are modified; 3) global outputs are variables as defined above

Includes are defined by the following conventions:

Includes are of two types: 1) Standard 'C defined function sets, e.g., <stdio. o; and 2) user defined
function sets, e.g., "f ileio. c" (see Appendix B)

File formats are defined by the following conventions:

1) <CLLIA>, <CLLIZ>, <size>
2) (c11,1x,c11,1x, i6)
Linel shows the names and relative positions of the fields within each record. Line 2 shows the data type
and length of each field, where:

c=character
x=space
i=integer

3-2

f=float

Placement of algorithm and variables local to main() :

Module level descriptions are inclusive of the algorithms and variables local to the function main () for
each module

Equality of trunk group and circuit group

Throughout this document the terms trunk group and circuit group are used interchangeably

3-3

3.2 cg_make: Make Circuit Groups Module

Purpose This module uses the eg and node ICF data files to produce a trunk group formatted for
use with other TAMI modules.

Call Syntax cg_make

Input
Files ICF node file This file name is hard-coded to node_dat.icf. See the ICF file

description in Appendix A for more information regarding contents
and format.

ICF eg file This file name is hard-coded to 'cg_dat.icf.' See the ICF file
description in Appendix A for more information regarding contents
and format.

Output
Files trunk size file This file contains a list of trunks. Each line contains two 11 -character

CLLI codes (the two span endpoints), along with an associated trunk
size.

Includes

Global
Variables

format <CLLI A>, <CLLI Z>, <trunk_size>
(c11,1x,c11,1x, i6)

example ADMSTX0101TAKRNOH2505T 120

<stdio.h>
<string.h>
"icf.hi"
"fileio.c"

Defines constants used to process ICF files
User-defined I/O functions; see Appendix B

Constants Constants used in array_make are defined in "icf. hi" as follows:

NODE_MAX 64
CG_MAX 3 8

none

number of characters in a ICF node file record
number of characters in a ICF eg file record

Local
Variables Variables local to main (): none.

Component
Functions make_cgs.()

node_find()
fget()

builds output trunk group records by looping through each
record in the eg file
returns the CLLI code for a given node index
user defined utility I/O function; see Appendix B

3-4

Function
Tree

main () — make_cgs () —,— f get ()

■ node_find() — fget() r
Algorithmic
Description The purpose of this module is to produce a trunk group file formatted for input to other

TAMI modules. Cg_make () performs this task by replacing the node index numbers in
the eg records with the node CLLI codes and printing out these endpoints along with a
trunk group quantity..

This module consists of a call to the make_cgs () function, which reads in the input
files, performs the amin algorithm and writes the output trunk group file.

3-5

3.2.1 make_cgs function cg_make module

Inputs none; operates on global variables

Outputs
file

returns

Purpose

Called By

Calls To

Local
Variables

file

integer

*writefile

none

pointer to the output trunk group, hardcoded to
1cg_make.out'

This function reformats information from the ICF node and eg files to create the output
trunk size file.

main()

make_link(), fget()

*nodefile, *cgfile
pointers to the input ICF node and eg data files

*writef ile pointer to the output trunk size file

no_nodes the number of records in the ICF node file
idx_num loop count variable for each eg record
f iie_pos pointer to a particular byte or position in the ICF eg file
status not used
no_cgs the number of records in the ICF eg file
nodeAidx the node index of the originating circuit group endpoint
nodezidx the node index of the terminating circuit group endpoint
ntrkqty the quantitiy of trunks in a circuit group record

character

Global
Variables

Algorithmic
Description

clli_A[]
clli_Z[]
node_info[]
cg_info[]

none

used to hold the originating node CLLI code
used to hold the terminating node CLLI code
used to hold a line/record from the ICF node file
used to hold a line/record from the ICF eg file

The function begins by opening the input and output files and counting the number of
records in the eg file. For each record in the ICF circuit group file, this function parses
the circuit group endpoints (denoted by node indexex) and the circuit group quantity
fields. For the node index endpoints, node_find() is called, which returns the node
CLLI code. Make_cgs () writes the CLLI code endpoints and trunk group size to the
output file. When each input CG file record has been reformatted, the function returns.

3-6

3.2.2 node find function cg_make module

Inputs

integer idx_num

file *nodefile

the index of a node in the ICF node file

the file pointer to the ICF node file

a pointer to a string in which a node CLLI code is returned

Outputs

character *ciii_ptr[]

returns not used

Purpose Given a node index, this function returns the node CLLI code

Called By make_cgs()

Calls To fget()

Local
Variables

character

long

node_info[]
clli_temp[]
file_pos

Global
Variables none

Global
Constants NODE_MAX

Algorithmic
Description Given a node i

array to hold node data
array to temporarily hold a CLLI code
position in the ICF node file

the number of characters in a node file record

Given a node index, this file calculates the node record's position in the node CLLI
code.

This function begins by using the node index to calculate the node record's position in
the ICF node file (an extra record must be skipped to account for a header record).
Then, this function calls f get () in order to read node record from the nodefile into the
buffer node_inf o []. The node CLLI code field is then parsed and checked to make
sure it is not a dummy code (all X's: «xxxxxxxxxxx"). If the CLLI code is valid, it is
assigned to clli_ptr to be returned to the calling function

3-7

3.3 span_make: Make Spans Module

Purpose This module decodes span information from the node and link ICF data files; the span
output file is used by the damage module, and is referenced by span record indices in
the path file.

Call Syntax span_make

Input
Files ICF node file This file name is hard-coded to 'node_dat.icf.' See the ICF file

description (Appendix A) for more information regarding contents
and format.

ICF link file This file name is hard-coded to 'link_dat.icf.' See the ICF file
description (Appendix A) for more information regarding contents
and format.

Output
Files

Includes

Global
Variables

span file

format

<stdio.h>
"icf.hi"
"fileio.c"

This file contains a list of spans. Each line contains two 11 -character
CLLI codes (the two span endpoints), a 2-character equipment code,
and Vertical-Horizontal coordinates for each endpoint.

<CLLI A>, <CLLI Z>, <equipment code>, <V-coord A>, <H-coord A>,
<V-coord Z>, <H-coord Z>
(c11,1x, c11,1x, c2,1x, i5,1x, i5,1x, i5,1x, i5)

Defines constants used to process ICF files
User-defined I/O functions; see Appendix B

Constants Constants used in span_make are defined in "icf .hi" as follows:

NODE_MAX 64 number of characters in a ICF node file record
Node_idx_f ldlen 4 number of characters in the node index field of the ICF node file
LINK_MAX 2 4 number of characters in a ICF link file record
CLLI_SIZE 12 number of characters in a CLLI code (11) plus the standard 'C null

character

none

Local
Variables

Component
Functions

Variables local to main (): none.

make_spans()
make_link()

node_find()

return_type()
fget()

loops through the node file to build the data records
for a given node, makes a record for each node link, given in
the link file
finds the corresponding node index in the link file for each
node index in the node file
reclassifies equipment type
reads in a given number of bytes from a given file position

3-8

Function
Tree

main () —make_spans () -i— f get () V \— make_link () —i— f get ()

I node_find()—fget()

return_type()

Algorithmic
Description The purpose of this module is to decode span information from the node and link ICF data

files. Span/link records are the shortest identifiable segments of telecommunications
transmission networks, typically representing segments between repeaters, or between a
repeater and multiplexing/switching equipment. The span_make module outputs a list of
these spans, designated by the node indices of the two span endpoints, along with
corresponding equipment types and vertical/horizontal coordinates.

This module uses the span_make () function to open the input/output file, and to
control the building of the records to be written to the output file. It then calls
make_link () (which in turn calls node_f ind () to set an index between the node and
link files, and return.type () to reclassify equipment types). Make_link (),
assembles the completed records, and writes them to the output file.

3-9

3.3.1 make_spans function span_make module

Inputs none

Outputs
file

Purpose

Called By

Calls To

Local
Variables

file

integer

character

Global
Variables

Algorithmic
Description

*writef ile pointer to the output span file

returns integer number of nodes in ICF node file for which links have been processed in
the ICF link file

For each record in the ICF node file, this function builds the spans that terminate at that
node from information contained in the ICF link file, and builds records with these spans
and their associated equipment codes and vertical/horizontal coordinates,.

main()

make_link(), fget()

*nodefile, *linkfile
pointers to the input node and link ICF data files

*writef ile pointer to combined node/link/equipment code output file

link_head reference to the beginning of a node's ICF link file references
link_tai 1 reference to the end of a node's ICF link file references
no_nodes the number of records in the ICF node file
idx_num general loop count variable
f ile_pos pointer to a particular byte or position in the ICF node file
status non-zero if the function's call to make_link () was successful
v_temp temporarily holds the vertical coordinate of the current node
h_temp temporarily holds the horizontal coordinate of the current node

clli_temp [] used to hold a node CLLI code
node_inf o [] used to hold a line/record from the ICF node file

file node_dat.icf
linkdat.icf

This function processes the ICF node file, record by record. For each node record, it
parses the node CLLI code field and makes sure it is not a dummy code (all X's:
"xxxxxxxxxxx"). Then it parses the iink_head and iink_tail fields from the
node record. These fields point to the node's corresponding ICF link file records. If the
link_head and iink_tail fields are valid (non-zero), then make_iink () is called,
which actually steps through each of the node's link records, reclassifies equipment
types, captures vertical and horizontal coordinates and builds the spans. If the call to
make_link () returns a status of o, then a general error message is printed to the
output terminal.

3-10

3.3.2 make link function span_make module

Inputs
integer

file

character

Outputs

returns

Purpose

Called By

Calls To

Local
Variables

character

long

integer

Global
Variables

Algorithmic
Description

head_pt the pointer to the first link file record describing the current node's links
tail_jpt the pointer to the last link file record describing the current node's links
node_v vertical coordinate of the current node
node_h horizontal coordinate of the current node
*link_f ile the pointer to the ICF link file
*node_f ile the pointer to the ICF node file
*outf ile the pointer to the span output file
node_cili [] the current node CLLI code

integer a status indicator, equal to 1 if make_link () ran without error, or 0 if an
error occurred in make_link ()

Given a node index number and the starting and ending link records for that node, this
function builds the spans that terminate at that node and writes them to the output file,
along with the span equipment type and V-H coordinates of the span endpoints.

make_spans()

fget(), node_find(), return_type()

linkrecord[LINK_MAX+1]
link_clli[]

link_type[]
type

f_pos

diff

status

link_v, link_h

node

none

used to read in and hold a record from the link file
holds the CLLI code of the terminating span
endpoint
holds the TAMI span equipment type
holds the ICF span equipment type

pointer to the current byte/position in the ICF link file

the number of link records to be processed for a
given node, equal to the difference between
tail_pt and head_pt
refers to a position in linkrecord [] as it is
sequentially processed
counts the number of link records processed, up to
diff
equal to 1 if make_link () ran without error, 0 if an
error occurred
the V-H coordinates of the terminating span
endpoint
the index of a span endpoint in the link file

In the ICF file format, a node file record points to the range of link file records that
describes the other endpoint of links that use that node (see Appendix A). Each link
file record has fields reserved for up to four such link endpoints. For a given node,

3-11

starting link record, and ending link record, function make_iink {) builds each
link/span along with an equipment code, and V-H coordinates of each endpoint and
writes this data to the output file. If an error occurs, make_link () returns a status of 0.

The function starts by calculating dif f, the number of link records to process from
head_pt to taii_pt. It then enters a loop to read each of the dif f link records into
linkrecord [] to reclassify the equipment code, to look up the CLLI codes and V-H
coordinates of the span endpoints and to verify that no file read error occurred. For
each link record, the function scans link endpoint fields until all four link endpoints have
been processed or a blank field is encountered. After all of the cuurent node's
span/link records have been processed, the function returns the value of status to
the calling routine.

3-12

3.3.3 node_find function span_make module

Inputs

integer

file

character

Outputs

returns

Purpose

Called By

Calls To

Local
Variables

character

long

Global
Variables

Global
Constants

Algorithmic
Description

idx num

*hc

the index of the node being constructed in this module
pointer to the vertical coordinate of the node
pointer the horizontal coordinate of the node

*nodef ile the file pointer to the ICF nodefile

clli_temp [] temporarily holds the CLLI code

no formal values are returned; outputs are written to the variable address for the vertical
and horizontal coordinates

To look up a node by index and return the CLLI code and vertical and horizontal
coordinates and node.

make_link()

fget()

node_inf o [] string to hold a node record

f ile_pos position in the ICF node file

none

NODE MAX number of characters in an ICF node file record

This function is called by mk_iink () to process the nodefile, line by line, to capture
the vertical and horizontal coordinates of each CLLI code. First this function sets the file
pointer to the second line of the file, skipping a header record. Then, this function
proceeds to call f get () in order to read the bytes of data that contain the vertical and
horizontal coordinates, from the nodefile, into the array node_inf o (). Upon return to
the function, an end of line character is written to the array record, and the v and h
coordinates are filtered out of the node_inf o () record, and into *vc, *hc.

This function begins by using the node index to calculate the node record's position in
the ICF node file (an extra record must be skipped to account for a header record).
Then, this function calls f get () in order to read node record from the nodefile into the
buffer node_inf o []. The node CLLI code field is then parsed and checked to make
sure it is not a dummy code (all X's: "xxxxxxxxxxx"). If the CLLI code is valid, it is
assigned to clli_ptr and the fields for the pointer s *vc and *hc (the vertical and
horizontal coordinates) are assigned to be returned to the calling function

3-13

3.3.4 return_type function span_make module

Inputs

character linktype The one-character ICF equipment code for a link/span record, denoting a
narrowly defined set: (T,D,E,N,G,L,C,W,Z,V,U,3,X,R,Y,I) .

Outputs

returns character The converted TAMI equipment type code from the set:
(Tl,L4,FO,MW).

Purpose This function is used to convert the ICF span/link type to a TAMI span type.

Called By make_link()

Calls To none

Local
Variables

character retumtype [] This output string holds the transformed input value for
communication equipment code

Global
Variables

Algorithmic
Description

none

This function is used to convert the ICF span/link type to a TAMI span type. The
function is passed a one-character equipment code which it maps to a TAMI equipment
code: T1, L4, FO (fiber optic), MW (microwave). See Appendix A for a description of ICF
link type codes. The function returns the new type to the calling function.

3-14

3.4 array_make: Array Make Module

Purpose This module decodes and reformats span information from the node and link ICF data
files; the span ("array") data is output to a file for use by the mk_ncam_jpath module.

Call Syntax array_make

Input
Files ICF node file This file name is hard-coded to 'node_dat.icf.' See the ICF file

description in Appendix A for more information regarding contents
and format.

Output
Files

Includes

Global
Variables

file

integer

structure

ICF link file This file name is hard-coded to 'link_dat.icf.' See the ICF file
description in Appendix A for more information regarding contents
and format.

array file This file name is hard coded to 'arrayjmake.out.' It is a binary file that
contains a record number and pair of node index numbers for each
span/link record stored in the link_inf o [] structure and
reformatted from the ICF data files.

format binary file, not viewable

<stdio.h> Standard 'C input/output functions
" icf. hi" Defines constants used to process ICF files
"f ileio.c" User-defined I/O functions; see Appendix B

Constants Constants used in array_make are defined in wicf.hi" as follows:

NODE_MAX 64
Node_idx_fldlen 4
LINK MAX 24

number of characters in a ICF node file record
number of characters in the node index field of the ICF node file
number of characters in a ICF link file record

*array_data_file
pointer to the output array data file

link_num counts the number of links records placed into the array_inf o []
data structure

count counts the number of records read from the ICF link file
f p indicates the current file position when writing to output file
i general loop count variable

link_info[12000] of type link_array
with fields:

integer iink_inf o [] . rec_no holds the span index number
character iink_inf o [] . link_pair holds both node index numbers of the

span endpoints, treated as string

example

3-15

Local
Variables

Component
Functions

Function
Tree

Algorithmic
Description

link_info[i]
link_info[i+l]

rec no

i+1

link_pair
2591 97,

2591 834"

Variables local to main (): none.

make_array()
make_link()

fget()

loops through the node file to build the array data structure
for a given node, makes an array record for each of the
node's links given in the link file
reads in a given number of bytes from a given file position

main()— make_array() {
make_link()— fget()

fget()

The purpose of this module is to decode span information from the node and link ICF
data files. Span/link records are the shortest identifiable segments of
telecommunications transmission networks, typically representing segments between
repeaters, or between a repeater and multiplexing/switching equipment. The
array_make module outputs a list of these spans, designated by the node indices of
the two span endpoints. This list is used in the mk_ncam_path module to represent
long-haul switch-to-switch transmission routes as a series of component spans.

This module opens the hard-coded output file name, "array_make. out." It then calls
make_array () (which in turn calls make_link ()) to populate the link_inf o []
structure with spans. This structure is then written in binary form to the output file, the
file is closed, and the total number of link/span records is written to the screen.

The following figure depicts the data flow performed by this module. For further
description of ICF format, refer to Appendix A.

input node file

I 1 BLTMMD023 11 12

4_ A' span endpoint

'Z' span endpoints ■

input link file

11 125 D 456 D 23 G 654 R
12 230 D

A A 4 +

1.
1 1 125
2 1 456
3 1 23 output array file
4 1 654
5 1 230 111

3-16

3.4.1 make_array function array_make module

Inputs none; operates on global variables

Outputs
global

Purpose

Called By

Calls To

Local
Variables

file

integer

character

Global
Variables

Algorithmic
Description

link_info[12000] Structure of type link_array
with fields:

integer link_inf o [] . rec.no holds the span index number
character iink_inf o []. link_pair holds both node index numbers of the

span endpoints, treated as string

returns integer number of nodes in ICF node file for which links have been processed in
the ICF link file

For each record in the ICF node file, this function builds the spans that terminate at that
node from information contained in the ICF link file. These spans are stored in the
iink_info[] structure.

main()

make_link(), fget()

*nodefile, *linkfile
pointers to the input node and link ICF data files

reference to the beginning of a node's ICF link file references
reference to the end of a node's ICF link file references
the number of records in the ICF node file
general loop count variable
pointer to a particular byte or position in the ICF node file
non-zero if the function's call to make_link () was successful

used to hold a node CLLI code
used to hold a line/record from the ICF node file

link_head
link_tail
no_nodes
idx_num
file_pos
status

clli_temp[]
node_info[]

none

This function processes the ICF node file, record by record. For each node record, it
parses the node CLLI code field and makes sure it is not a dummy code (all X's:
"xxxxxxxxxxx"). Then it parses the link_head and link_taii fields from the
node record. These fields point to the node's corresponding ICF link file records. If the
iink_head and link_tail fields are valid (non-zero), then make_link () is called,
which actually steps through each of the node's link records and builds the spans. If the
call to make_link () returns a status of o, then a general error message is printed to
the output terminal. Although make_array () returns the number of records
processed in the node file, this value is never used by the calling routine.

3-17

3.4.2 make link function array_make module

Inputs
integer

file

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

character

long

integer

Global
Variables

Algorithmic
Description

node_idx the node file index of the current node being processed
head_pt the pointer to the first link file record describing the current node's links
taii_pt the pointer to the last link file record describing the current node's links
*link_f ile the pointer to the link file

link_info[12000] Structure Of type link_array
with fields:

integer iink_inf o []. rec_no holds the span index number
character iink_inf o []. iink_pair holds both node index numbers of the

span endpoints, treated as string

integer link_num the number of records in link_info[]; also points to
the next unused link_inf o [] record

integer a status indicator, equal to 1 if make_link () ran without error, or 0 if an
error occurred in make_link ()

Given a node index number and the starting and ending link records for that node, this
function builds the spans that terminate at that node and places them in the
link_info[] structure.

make_array()

fget()

1inkrecord[LINK_MAX+1]
linkpairflO]

used to read in and hold a record from the link file
temporarily holds a pair of concatenated node index
endpoints that define a link

f _pos pointer to the current byte/position in the ICF link file

iink_idx the index of a link endpoint in the link file
dif f the number of link records to be processed for a given node, equal to

the difference between tail_pt and head_pt
i refers to a position in l inkrecord [] as it is sequentially processed
j counts the number of link records processed, up to dif f
status equal to 1 if make_iink () ran without error, 0 if an error occurred

see Outputs above.

In the ICF file format, a node file record points to the range of link file records that
describes the other endpoint of links that use that node. Each link file record has fields
reserved for up to four such link endpoints. For a given node, starting link record, and
ending link record, function make_link() builds each link/span and stores it in the
link_info[] structure. If an error occurs, make_l ink () returns a status of 0.

3-18

The function starts by calculating dif f, the number of link records to process from
headjpt to taii_pt. It then enters a loop to read each link record from head_pt to
tail_pt into linkrecord [], and to verify that no file read error occurred. For each
link record, the function scans link endpoint fields until all four link endpoints have been
processed or a blank field is encountered. Processing of each link endpoint, stored in
link_idx, entails the following:

Concatenating the span endpoints, (node_idx, iink_idx) into linkpair
Assigning the current span/link index (iink_num) to the rec_no field of the
span/link record, link_info [link_num] .rec_no
Copying linkpair into the link_pair field of the span/link record,
link_info[link_num].link_pair
Incrementing the span/link counter, iink_num
Moving i to point to the next link field in the linkrecord [] (points to the
end of the string if done)

After each link field of each link record has been processed, and the resulting spans
stored in link_inf o [], make_link () returns the value status to the calling
function.

3-19

3.5 mk_ncam_path: Make Paths Module

Purpose This module decodes and reformats path information from the ICF data files and the
output array file from the array_make module; whereas the ICF files encode physical
transmission paths as a series of indexed nodes, TAMI must use paths that are
encoded as a series of spans, where each span has a characteristic span type that can
be damaged. Mk_ncam_path employs code and data types from the IDA/CAM code
library. Readers are directed to Reference 4, the IDA/CAM Programmer's Manual where
appropriate.

Call Syntax mk_ncam_path

Input
Files ICF node file This file name is hard-coded to 'node_dat.icf.' See the ICF file

description in Appendix A for more information regarding contents
and format.

ICF link file This file name is hard-coded to 'link_dat.icf.' See the ICF file
description in Appendix A for more information regarding contents
and format.

ICF trunk file This file name is hard-coded to 'cg_dat.icf.' See the ICF file
description in Appendix A for more information regarding contents
and format.

ICF path file This file name is hard-coded to 'pid_dat.icf.' See the ICF file
description in Appendix A for more information regarding contents
and format.

Output
Files

array file

format

path file

format

example

This file name is hard coded to 'array_make.out.' It is a binary file that
contains a record number and pair of node index numbers for each
span/link record stored in the link_inf o [] structure and
reformatted from the ICF data files.

binary file, not viewable

This file name is hard coded to 'mk_ncam_path.out.' Each record in
this file specifies a physical transmission path between a pair of
switches. A physical transmission path is defined by the series of
spans (from none for collocated switches to a maximum of 662) that
connect a switch pair. Spans are identified by indexes that point to
the appropriate record number in the span file.

<switch CLLI A>, <switch CLLI Z>, <span1>, <span2>,
(c11,1x, c11,1x, i6, i6 i6)

,

ADMSTX0101T AKRNOH2505T 3045 3042 7579 237
(where * 3045 . . .' are record numbers in the span file output
by the span_make module)

Includes

Constants

"nat.h"

None

IDA/CA M include file (Reference 4)

3-20

Global
Variables

cg_path

integer

structure

Local
Variables

character

cg_path

int

file

* f irst_cg points to the first eg in the eg structure defined in Reference 4; uses
user-defined type

count counts the number of records in the array input file
f irst_f lag indicates whether the first path of a trunk group is being processed
err toggle to indicate error in command line arguments

link_info[12000] oftype link_array
with fields:

integer link_inf o []. rec_no holds the span index number
string link_inf o []. iink_pair holds both node index numbers of the

span endpoints, treated as string

Variables local to main ():

c a single character used to parse command line options
external *optarg

points to the command line argument string supplied externally by the
operating system

*cg_node points to a record in the eg structure defined in Reference 4; uses user-
defined type

i general loop count variable
external *optind

points to the number of command line arguments processed, supplied
externally by the operating system

*array_data_file, *outfile
pointers to the input array file and output path file

Component
Functions write_span(!

bsearch()

qsort()

span_cmp()

sort_cmp()

get_data()

writes out the path, including all the spans, for a given circuit
group record

standard 'C binary search routine, used to search for spans
in the iink_inf o [] structure

standard 'C sort routine, used to sort iink_inf o []

string comparison function used by bsearch (); see
char_comp () in Appendix B for description

string comparison function used by qsort (); see
char_comp () in Appendix B for description

this IDA/CAM routine loads all four ICF files into the global
IDA/CAM data structures defined in "nat. h." See
Reference 4 for a description of this function

3-21

Function
Tree

get_data()

main()-J- qsort()— sort_cmp()

L write_span () — bsearch () — span_cmp ()

Algorithmic
Description As described in Appendix A, the ICF paths are encoded as a series of network nodes.

TAMI requires that paths be described as series of links/spans. This module uses the
list of spans created by the array_make module to convert ICF paths to TAMI paths
and replaces indexed nodes with their CLLI codes.

The module starts by loading the input files into structures. First, it opens the file
array_make. out and loads its records into the link_inf o [] structure. This
structure is then sorted by qsort (). The IDA/CAM routine, get_data () is called to
load the four ICF files into data structures.

The main algorithm is then performed using the linked list of circuit group data
structures. Each of these structures contains a pointer to the linked list of all the paths
used by the circuit group. Each path structure points to the linked list of all the nodes
that form the path. All of these structures are defined in more detail in Reference 4.
Mk_ncam_path steps through the linked list of circuit groups, calling write_span ()
to build and output the circuit group's paths in TAMI format.

3-22

write_span function mk_ncam_path module

Inputs

file
cg_path

Outputs

Purpose

Called By

Calls To

Local
Variables

picLtbl

path_node_tbl

link_array

integer

Algorithmic
Description

*file
*node

points to the output path file
points to the circuit group structure for which paths are to be built;
cg_path is a user-defined structure described in Reference 4

none; prints results directly to output file

For each circuit group record in the ICF eg file, this function uses TAMI spans stored in
the link_inf o [] structure to build the paths used by the circuit group.

main()

bsearch()

*node_pid pointer to a table of a paths for a given circuit group; pid_tbl type
defined in Reference 4

*npath pointer to a particular path; path_node_tbl type defined in
Reference 4

''span pointer to an element of the link_inf o [] structure

indexl, index 2
the ICF node indexes of span endpoints

cnt counts the number of paths processed for a circuit group
cntl counts the number of spans processed for a circuit group

character buf []

Global
Variables

holds a span record in the same format as
link_info[].link_pair

integer f irst_f lag indicates whether the first path of a trunk group is being processed

Contains global IDA/CAM structures declared in "nat .h" and loaded by
get_data (); see Reference 4

For each circuit group record in the ICF eg file, this function uses TAMI spans stored in
the iink_inf o [] structure to build the paths used by the circuit group. Specifically,
write_span () performs the following steps:

1) Uses the pointer to the current circuit group, *node, to access the path endpoint
CLLI codes and a pointer to the cg's table of paths

2) Loops through each path in the path table

3) For each path, loops through all the nodes that compose the path, searching
link_inf o [] to convert each chained pair of nodes into a link/span index

The function prints its results to the output file as they are obtained.

3-23

3.6 mat_trk: Match Trunks module

Purpose For every pair of EC backbone switches, this program maps the logical trunk group to
the corresponding physical transmission paths, as described in Algorithmic Description
below. Bi-directional trunk groups are the default, but one-way trunk groups are
assumed for MCI.

Call Syntax mat_trk
options:

-a
-d
-f

-m

-o
_•?

-f <filename> [options]

turn off substitution of average trunk size
turn debug mode on to print debug statements
reads in input file <f iiename> which contains a list of the 5
input/output files used by mat_trk
specify MCI data, which expects both 4 character switch CLLI code
and a 3 character location code in the switch input file
assume trunk groups are one-way (e.g., for MCI)
user help-prints call syntax and exits without running

example mat_trk -f MCIfiles.fy94 -o -m (spaces optional)

Input
Files list file This file simply contains the names of the three input files and two

output files to be used by mat_trk. File names are limited by
mat_trk to a length of 50 characters.

format linel: <path file name>
Iine2: <switch file name>
Iine3: <trunk file name>
Iine4: <output trunk file name>
Iine5: <output path file name>

switch file This file contains the list of IEC backbone switches. For MCI data, this
file also contains a location code for each switch. Non-MCI switches
are specified by an 11-character CLLI code, where the first 8
characters identify a unique location. MCI switches are specified by a
4 character code, and locations are given by a separate 3 character
code.

format: Non-MCI:

MCI:

input
trunk file

format:

path file

<IEC switch CLLI code>
(C11)
<MCI switch code>, <MCI location code>
(c4,1x, c3, 3x)

This file, created by the cg_make module, specifies the trunk groups
and quantities for the IEC backbone, specified by the end point CLLI
codes and an integer number of trunks. If trunk groups are assumed
to be one-way, then the first CLLI code is the originating switch.

<switch CLLI A>, <switch CLLI Z>, <trunk quantity>
(2x,c11,c11,i4)

Each record in this file, created by the mk_ncam_path module,
specifies a physical transmission path between a pair of switches. A
physical transmission path is defined by the series of spans (from

3-24

Output
Files

Includes

Constants

Global
Variables

none for collocated switches to a maximum of 662) that connect a
switch pair. Spans are identified by indexes that point to the
appropriate record number in the span file.

format <switch CLLI A>, <switch CLLI Z>, <span1 >, <span2>,
(c11,1x, c11,1x, i6, i6 i6)

,

output trunk file The output trunk file specifies the IEC switch CLLI codes of the trunk
endpoints, the number of trunks in the A to Z direction (or all bi-
directional trunks), and the number of trunks in the Z to A direction
(only used for one-way trunk groups). Each record is in 1 -to-1
correspondence with the output path file. That is, the number of
trunks in the ntn trunk file record traverse the transmission path
specified by the ntn path file record. Therefore, when a trunk group
is split over 5 paths for example, there will be 5 trunk file records to
describe this, corresponding to each of the 5 path file records.

format <switch CLLI A>, <switch CLLI Z>, <A->Z trunk quantity;», <Z->A
trunk quantity>
(c11,1x,c11,1x, i4,1x, i4)

The output path file specifies the paths used to implement the trunk
groups. If a path has no corresponding trunk group record, then the
average trunk group size may be used, or the path record can be
thrown out. There are two differences from the input path file: (1) if
the path had invalid or non-switch endpoints it has been filtered out;
(2) paths that could not be matched to a corresponding trunk group
have been filtered out of the output file if the [-a] option was used.

format same as input path file

output path file

<stdio.h>
<stdlib.h>
<string.h>
"fileio.c" See Appendix B

PATH_REC 4000
CLLI_LNG 12
SWLOC_LNG 4
SWITCH_MAX 200
TRK_MAX 15000

maximum number of characters in a path file record
length of a switch CLLI code, including terminating null character
length of an MCI location code, including terminating null character
maximum number of records in the switch file
maximum number of records in the trunk file

file *pathfile, *switchfile, *trunkfile, *filelist, *outfile,
*outf ile2 pointers to the input and output files

integer tog_mci toggle to indicate -m command line option is being used
tog_spr toggle for a Sprint option that is no longer used
tog_debug toggle to indicate -d command line option is being used
tog_noavg toggle to indicate -a command line option is being used
numswitch the number of records read in from the switch file
numtrunk the number of validated records read in from the trunk file
maxnpath indicates the maximum number of path file records that pertain to a

single switch pair

3-25

float avgtrunk the average size of the valid trunk records

character switches [SWITCH_MAX] [CLLIJLNG]
array to hold up to SWITCH_MAX EC switch CLLI codes, each of
length CLLI_LNG (including null character)

loc[SWITCH_MAX][SWLOC_LNG]
array to hold up to SWITCH_MAX IEC switch location codes (used only
for MCI data), each of length SWLOC_LNG (including null character)

maxAsw[CLLI_LNG], maxZsw[CLLI_LNG]
these hold the CLLI codes of the switch pair with the maximum
number of paths, tracked as a statistic printed to the screen

buffer[100][PATH_REC]
this buffer holds up to 100 path records to support the sequential
processing of the path file

Structure trks [TRK_MAX] Of type trk_struct

Component
Functions

with fields:
character

integer

trks[].clliA
trks[].clliZ
trks[].qty
trks[].used

originating trunk group endpoint
terminating trunk group endpoint
quantity of trunks in trunk group record
toggle to track use of trunk group record

openfiles()
loadswitches()
loadtrunks()
outprint()
qsort()
bsearch()
char_comp()
processpaths()
getsize_oneway()
getsize()

getswidx()
processtrunks()

opens input and output files
loads switch file into the switch list, switches []
loads trunk file records into the trunk structure
prints out one output trunk file record for each path
standard 'C quick sort routine, used to sort switch list
standard 'C binary search routine, used to search switch list
string comparison routine for qsort () and bsearch ()
maps a logical trunk group to its physical paths
finds the oneway trunk sizes given a pair of switch endpoints
finds the bi-directional trunk size given a pair of switch
endpoints
finds the index number of a switch within the switch list
handles trunk groups which had no matching paths

Function
Tree

— openfiles ()

— loadswitches () qsort ()

main()—

char_comp()

—loadtrunks() -

—processpaths()

bsearch()_ char_comp()

■bsearch()— char_comp()

— getsize_oneway()

— getsizeO

_ outprint()

_ processtrunks() -r- getswidx()

I— getsize_oneway()

I— outprint()

3-26

Algorithmic
Description For every pair of IEC backbone switches, this module maps the logical trunk group to

the corresponding physical transmission paths. Because the trunk group and path
information are often maintained by separate units within a carrier's organization, there is
no guarantee that the logical trunk groups map cleanly to each physical path. This
module addresses this problem by enforcing a number of "set recombination" rules:

1) Invalid endpoints. Trunk groups and paths that do not have switch endpoints
(identified in the switch file) are filtered out and not used

2) Paths and trunk groups match. Where paths can be matched to a corresponding
trunk group (i.e., path endpoints are the same as trunk group endpoints), the
module divides the trunks in the trunk group equally among all available paths (with
any integer remainder of trunks given to the last path). This is the most reasonable
assumption in the absence of more specific carrier data. For example, a trunk group
of size 60 that has 5 matching physical paths would be divided into 5 output trunk
group records, each of size 12.

3) Path, but no trunk group. Where a path cannot be matched to a corresponding
trunk group, the module gives two options. One, throw the path out. Or two, make
up a trunk group containing the average number of trunks in the network, based on
the reasoning that a trunk group should exist for the path, but was inadvertently left
out of the trunk group data. The first option is usually employed.

4) Trunk group, but no path. Where a trunk group exists with no corresponding
physical path data, the program checks to see if the endpoints are collocated. If so,
no path is necessary since the switches are in the same building, and the trunk
group size can be used. A path record is generated (containing no spans) to
maintain the one-to-one mapping between trunk groups and paths. If the switches
are not collocated, the trunk record must be thrown out since there is no
corresponding path data with which to evaluate network damage.

The module provides the option [-o] to model trunk groups as one-way, although
paths are always considered to be bi-directional. In the case of one-way trunk groups,
the module maintains separate A->Z and Z->A trunk size fields for each switch pair.
One-way trunk groups are used for MCI data. The module also provides an MCI option
[-m] to indicate that the switch file will contain 4 character switch codes and 3 character
location codes, and not the usual 11 character CLLI codes. The [-a] option tells the
module not to assume an average trunk size for paths that have no corresponding trunk
groups.

After the command line arguments have been parsed and interpreted, main ()
executes in the following order:

1) Calls openf iles () to open pointers to input and output files

2) Calls loadswitches () to read the switch file into switches []

3) Calls loadtrunks () to load the trunk file into the trunk structure, trks []. Trunk
records with non-switch end points are thrown out

4) Calls processpaths () to sequentially process the sorted path file and find
matching trunk groups. The trks [] . used field is set for trunk groups that are
matched here. Output paths and trunks are written to the output files as they are
matched

3-27

5) Calls processtrunks () to handle all of the trunks that didn't have matching paths.
If the endpoints are collocated, it uses the trunk group; otherwise, it must be thrown
out

6) Prints out the switch pair that had the greatest number of physical paths, then exits.

3-28

3.6.1 openfiles function mat_trk module

Inputs
character files string containing the name of the file that lists six input/output

files *

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

character

Global
Variables

file *filelist

*pathfile

*switchfile

*trunkfile

*outfile
*outfile2

points to the file whose name is
contained in the files string
points to a file that contains information
on the physical paths and switches
points to a file that contains information
on the backbone network switches
points to a file that contains information
on the logical trunks
filtered version of trunkfile
filtered version of pathfile

no formal values are returned

To open path, trunk and switch input files and path and trunk output files.

main()

none

tempf ile [50] this variable is used temporarily to hold the name of the next file to be
opened and read in from the list of files in f ilelist

none

Algorithmic
Description This function opens the file whose name is stored in the string files, setting a

filepointer to f ilelist. Filelist contains a list of all the input files to be opened
in the following order: pathfile, switchfile, trunkfile, outfile and
outf iie2 This function then proceeds to open each of these files, in the order they
are read in from f ilelist, assigning them to the matching filepointers.

Errors encountered during any file opening operation result in an error message beinq
printed to the screen, and termination of the module.

3-29

3.6.2 loadswitches function mat trk module

Inputs none; operates on global variables

Outputs
global

returns

Purpose

Called By

Calls To

character

integer

switches[]
loc[]
numswitch

file *switchfile
no formal values are returned

the list of IEC switch CLLI codes
the list of MCI switch locations
used to count the number of records in
the switchfile
points to the switch file

To read from the switch file, to load the switch CLLI codes into the switches vector, to
count the number of switch records, and to perform an alphabetical sort

main()

qsort() the quick sort routine from the standard 'C library stdiib.h

Local
Variables

integer

character

Global
Variables

integer

Algorithmic
Description

k
j

line[]
tempCLLI[;
temploc[]
tempsw[]

tog_mci

general loop count variable
not used

used to hold a line of input from the switch file
temporarily holds a parsed switch name
temporarily holds a parsed MCI switch location
temporarily holds a parsed MCI switch CLLI code

a toggle used to indicate that MCI switches and locations should be
expected in switch file

This function reads the switch file line by line, loading each CLLI code into the array of
strings switches [], and setting numswitch to the total number of switches in the
switch file. Because other functions in this module depend on the switches being in
alphabetical order, the routine passes the switches [] array to qsort ().

If MCI data is indicated by tog_mci, then each switch name contains a four character
switch CLLI code and a three character location code. In this case the function loads
the CLLI codes into switches, and the location codes into loc [] .

3-30

3.6.3 loadtrunks function mat_trk module

Inputs none; operates on global variables

Outputs
global trk_struct structure

with fields
trks[]

character trks[] .clliA
trks[] .clliZ

integer trks[] • qty
trks[] .used

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

integer
float

used to hold each record in the trunk file

originating trunk group endpoint
terminating trunk group endpoint
quantity of trunks in trunk group record
toggle to track use of trunk group record

no formal values are returned

To read the trunk file, loading valid records into the trunk structure as described in the
algorithmic description below

main()

char_comp () the function used to specify ascending alphabetic order in the
character comparison performed by bsearch ()

bsearch () the binary search routine from the standard 'C library stdlib.h

k, j general loop count variables
*f ound_A integer pointer used to indicate whether the originating end point of

a trunk group is a valid switch: zero if false and non-zero if true
* f ound_z integer pointer used to indicate whether the terminating end point of

a trunk group is a valid switch: zero if false and non-zero if true
tottrunks total number of trunks for the IEC that have valid switch end points

numtrunk the number of valid trunk group records read from the trunk file
avgtrunk the average size of a valid trunk group: tottrunks /numtrunk

Algorithmic
Description

This function handles cases where a trunk group record did not have a corresponding
physical path . If the trunk group endpoints are collocated, then a physical path is
unnecessary. The trunk group is used (written to the output trunk file) and a
corresponding dummy path record (path with no span) is written to the output path file
to maintain the required one-to-one mapping between logical trunk groups and physical
paths. Trunk groups that do not have collocated endpoints are filtered out of the data
and are not used. Because these trunk groups do not have physical path information, it
is impossible to evaluate the effect of network damage on them. The function logic is as
follows.

This function reads the trunk file line by line, until the end of the file is reached. For
each line (record), it parses the originating trunk end point, terminating trunk end point,
and trunk quantity, and loads these fields into the trks [] structure. Next, the function
conducts a binary search to check that the trunk end points, trks []. clliA and
trks []. ciliz, are found in the list of switches, switches []. If so, the trunk record
is valid, the loop counter is advanced, and the trunk quantity is summed into

3-31

tottmnks. If not, the trunk record is not valid and the loop counter is not advanced,
so that the next record read in from the trunkfile will overwrite it.

When the end of the file is reached, numtrunk is set to the loop counter, and specifies
the number of valid records read. Avgtrunk is computed as tottrunks/numtrunk,
and both numtrunk and avgtrunk are printed to the standard output.

3-32

3.6.4 processpaths function mat_trk module

Inputs
integer tog_oneway a command line toggle used to indicate the use of one way

trunks

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

integer

character buffer []

maxAsw[]
maxZsw[]

no formal values are returned

a vector of strings that holds valid paths
before printing them to an outfile
used to hold originating endpoint
used to hold terminating endpoint

To process paths one by one and write out a filtered path file and filtered trunk file in
one-to-one correspondence with the paths as described in the algorithmic description
below

main()

char_comp()

bsearch()

ge t s i z e_oneway()

outprint()

getsize()

character

the function used to specify ascending alphabetic order
in the character comparison performed by bsearch ()
the binary search routine from the standard 'C library
stdlib.h
the subroutine used to determine the size for oneway
trunks.
This routine is used to split trunks among paths and print
results to an outfile
the subroutine used to determine the size for bi-
directional trunks.

k general loop count variable
pathrec counts records read in from pathf ile
pathctr counts number of paths for a given switch pair
newpath toggle to detect next switch pair
avgused toggle to detect use of average trunk size constant avgtrunk
qtyA trunk size variable for A->Z direction
qtyz trunk size variable for Z->A direction
* f ound_A integer pointer used to indicate whether the originating end point of

a trunk group is a valid switch: zero if false and non-zero if true
*f ound_z integer pointer used to indicate whether the terminating end point of

a trunk group is a valid switch: zero if false and non-zero if true

pathline a temporary string variable to hold a record from the pathf ile
pathA holds the originating endpoint of the path in pathline
pathz holds the terminating endpoint of the path in pathline
nextA holds the originating endpoint of 'next' path to compare it with current

path
nextz holds the terminating endpoint of 'next' path to compare it with

current path

3-33

Global
Variables

float avgtrunk the average size of a valid trunk group: tottrunks/numtrunk

Algorithmic
Description

This function reads the first record of the path file, increments the path record counter, pathrec,
parses the originating and terminating endpoints, and loads these into pathA and pathz, respectively.
Next the function conducts a binary search to check that the path endpoints are found in the list of
switches, switches []. If so, the path record is valid, the path record is copied to buffer, and the loop
counter is advanced.

Next this function reads the remaining records in the path file line by line. For each record it
parses the originating and terminating endpoints and loads them into nextA and nextz respectively,
then a comparison is made between this pair of endpoints and pathA, pathz. If the endpoints are a
match, this record is copied to buffer, and the next record is processed in the same manner. (If there is
not a match, these values are held in nextA, nextz for the next iteration of this section.) When all sets
of matching endpoints have been found, the function calls a subroutine, (getsize_oneway or
getsize), which return the trunk size for the pathA, pathz switch pair. Then, this trunk size is used in a
call to the outprint subroutine, to divide the trunk size evenly among the matching sets of switch pairs
held in the buffer, with any remainder going to the last switch pair.

Finally, this function sets nextA, nextz, the last read in switch pair, (which were also the first
non-matching pair) equal to pathA, pathz, and loops back to searching the path file for matching pairs.

3-34

3.6.5 processtrunks function mat trk module

Inputs
integer

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

integer

Algorithmic
Description

tog_oneway

trk_struct structure
with fields

character

toggle used to indicate one-way trunk groups for MCI

integer

trks[]

trks[]
trks[]
trks[]
trks[]

loc[] string

no formal values are returned

To handle cases where a trunk

main()

outprint() To
ge t s i z e_oneway () To
getswidxO To

used to hold each record in the trunk file

clliA originating trunk group endpoint
ciliz terminating trunk group endpoint
qty quantity of trunks in trunk group record
used toggle to track use of trunk group record

an array used to determine collocation
for MCI

group exists with no corresponding path record.

split trunks and print results to an outfile
add up the trunk quantity for oneway trunk group
return the index of a switch CLLI within the switch list.

i
qtyZ
idxA

idxZ

tot unused

numtrunk
tog_mci

general loop count variable
trunk size variable for Z->A direction
A value returned by getswidx, the index of the trunk group
originating endpoint
A value returned by getswidx, the index of the trunk group
terminating endpoint
used to keep track of the total number of trunk records that were not
used.

the number of valid trunk group records read from the trunk file
a toggle used to indicate MCI trunks

For each trunk record, this function checks to see if the record has been used. If it has
not then it checks for MCI trunk record (tog_mci). If the records are not MCI then it
uses a matching process to determine the collocation, and to create a dummy path with
no spans and a corresponding trunk size record is written to the output file. If the trunk
record is MCI then the function uses loc [] to determine collocation.

Finally, this function prints to screen all trunk records that did not get used, as well as a
total.

3-35

3.6.6 getsize_oneway function mat_trk module

Inputs
character

Outputs
global

returns

Purpose

Called By

Global
Variables

integer

Algorithmic
Description

*head

*tail

trk_struct structure
with fields

character

a character pointer used to represent the originating end point of
a trunk group
a character pointer used to represent the terminating end point
of a trunk group

integer

trks[]

trks[].clliA
trks[].clliZ
trks[].qty
trks[].used

used to hold each record in the trunk file

originating trunk group endpoint
terminating trunk group endpoint
quantity of trunks in trunk group record
toggle to track use of trunk group record

integer returns the oneway trunk size for the switch endpoints passed in

To process the trunk size for oneway trunks.

processpaths()
processtrunks()

Calls To none

Local
Variables

integer i

numtrunk

general loop count variable

an integer holding the number of trunks

This function loops through the trunk group list, summing all trunk quantities with end
points (head, tail). This total is returned by getsize_oneway (). The
trks []. used field is set for trunks that are used.

3-36

3.6.7 getsize function mat_trk module

Inputs
character

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

Algorithmic
Description

''head

''tail

a character pointer used to represent the originating end point of
a trunk group
a character pointer used to represent the terminating end point
of a trunk group

trk_struct structure trks []
with fields

character

integer

integer

trks[].clliA
trks[].clliZ
trks[].qty
trks[].used

used to hold each record in the trunk file

originating trunk group endpoint
terminating trunk group endpoint
quantity of trunks in trunk group record
toggle to track use of trunk group record

returns the bi-directional trunk size for the switch endpoints
passed in

To compute and return the total number of trunks for a given switch pair.

processpaths()

none

i
tot

none

general loop count variable
used to hold the total number of trunks to be returned

This function loops through the trunk group list, summing all trunk quantities with end
points (head, tail) or (tail, head). This total is returned by getsize(). The
trks []. used field is set for trunks that are used. If no trunks are found, (-1) is
returned.

3-37

3.6.8 getswidx function mat_trk module

Inputs
character *swciii the CLLI code of the switch for which to search

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

Algorithmic
Description

character switches [] The list of I EC switch CLLI codes to
search

integer the index of swcili in vector switches [], -l if not found

This short function returns swcili' s index within switches [] or -l if it is not a
member of the list

processtrunks()

none

general loop count variable

none

This function uses a loop to sequentially compare swcili to each element in
switches []. It returns the array index of the first (and only) element that matches, or
-l if no match is found..

3-38

3.6.9 outprint function mat_trk module

Inputs
character

Outputs
global

returns

Purpose

Called By

Global
Variables

*head

*tail

qtyA
qtyZ
pathctr

a character pointer used to represent the originating end point of
a trunk group
a character pointer used to represent the terminating end point
of a trunk group
trunk size variable for A->Z direction
trunk size variable for Z->A direction
counts number of paths for a given switch pair

file *outf ile filtered version of the trunk file

no formal values are returned

To split trunks across paths and print results to an outfile

processpaths()
processtrunks()

Calls To none

Local
Variables

integer i general loop count variable

none

Algorithmic
Description This function calculates the ratio of trunk size (qtyA, qtyz) to the number of paths

(pathctr) for each (head, tail) switch pair and prints the results to outfile.

3-39

3.7 rem_dups: Remove Duplicate Records Module

Purpose

Call Syntax

This module addresses an artifact of MCI data, namely duplicate records in the path data
file. This module removes path records that are within two records "distance" of a
duplicate record

rem_dups -i <input file> -o <output file>
mandatory:

[options]

-i <input file>

-o <output file>

options:

specifies the name of the file containing the input
path file records
specifies the name of the file which will hold the
filtered output path file

user help-prints call syntax and exits without
running

example rem_dups -i path_file.MCI -o rem_dup.out

Input
Files input

path file

Output
Files

format

example

output
path file

Each record in this file, specifies the physical transmission path between a
pair of switches. A physical transmission path is defined by the series of
spans (from none for collocated switches to a limit of 662) that connect a
switch pair. Spans are identified by indexes that point to the appropriate
record number in the span file.

<switch CLLI A>, <switch CLLI Z>, <span1>, <span2>,...,
(c11,1x, c11,1x, i6, i6,... ,i6)

ASTl NYC1 3045 3042 7579 237
NYC1 ASTl 3045 3042 7579 237
NYC1 AST2 3045 3042 7579 237
NYC1 AST2 3045 3042 7579 237

This file is in the same format as the input path file, except that duplicate
records have been removed, and switch endpoints have been arranged to
ensure that the first switch is alphabetically prior to the second switch.

format

example

same as input path file

ASTl
AST2

NYC1
NYC1

3045 3042 7579 237
3045 3042 7579 237

Includes <stdio.h>
<stdlib.h>
<string.h>
"fileio.c"

Constants PATH REC 4000

see Appendix B

maximum number of characters in a path file record

Global
Variables none

3-40

Local
Variables

extern

Variables local to main ()

character
integer

*optarg
optind

points to a command line argument,
not used

file *infp, *outfp

integer tog_infile
tog_outfile
tog_err
line2_init
max_path_len
lenl
lennext
i

character ch
infilef]
outfile[]
swl []
sw2[]
linel[PATHREC]
line2[PATHREC]
next1ine[PATHREC]

pointers to the input and output files

toggle to indicate input "file name" was read in successfully
toggle to indicate output "file name" was read in successfully
toggle to indicate an error in the command line arguments
signals that line2 has been initialized with a string value
keeps track of the maximum path record length
holds the length of the path record in linei
holds the length of the path record in nextline
general loop count variable

holds the command line argument
holds the name of the input file
holds the name of the output file
holds a path's originating endpoint
holds a path's terminating endpoint
holds a line read in from the input path file
holds a line read in from the input path file
holds a line read in from the input path file

Component
Functions none

Function
Tree none, main () only

Algorithmic
Description This module addresses an artifact of MCI data, namely duplicate records in the path data

file. This module removes path records that are within two records "distance" of a
duplicate record

This module consists solely of a main () routine . The main () routine first conducts
initialization steps: defines local variables; processes command line arguments; reads in
the name of the input file and opens it in read only mode; and reads in the name of the
output file and opens it in write only mode.

The main algorithm of rem_dup () tracks the last two unique path file records, with
which subsequent records are compared to determine duplication. The main algorithm
is initialized by loading the first path record into linei and printing this line to the
output file. Subsequent records are read into nextline and compared to linei. As
soon as a second unique path record is found, it is copied from nextline to line2
and written to the output file-

Once linei and Iine2 are initialized , they are used as a queue data structure to hold
the last two unique path records. When nextline is found to be different from linei
and Iine2:

3-41

• nextline is printed to the output file
• linei shitted out of queue
• line2 is shifted to linel
• nextline is Shifted to line2

Pathfile records are always printed out such that the endpoint CLLI codes are in
alphabetical order. The algorithm above is continued until the end of the file is reached.

3-42

3.8 sort_paths: Sorting of path file module

Purpose This module is used to sort the records in the MCI path file

Call Syntax sort_paths -i <input file> -o <output file> [options]
mandatory:

-i <input fiie> specifies the name of the file containing the input
path file records

-o <output fiie> specifies the name of the file which will hold the
filtered output path file

options:
-? user help-prints call syntax and exits without running

example sort_paths -i infile -o outfile

Input
Files input

path file Each record in this file specifies the physical transmission path between a pair
of switches. A physical transmission path is defined by the series of spans
(from none for collocated switches to a limit of 662) that connect a switch pair.
Spans are identified by indexes that point to the appropriate record number
in the span file.

format <switch CLLI A>, <switch CLLI Z>, <span1>, <span2>
(c11,1x,c11,1x, i6, i6,... ,i6)

Output
Files

example ASTI
ASTl

NYC2
NYC1

3045 3042 7579 237
3045 3042 7579 237

output
path file This file is in the same format as the input path file, except that records have

been sorted in alphabetical ascending order.

format same as input path file

example ASTI
ASTl

NYC1
NYC2

3045 3042 7579 237
3045 3042 7579 237

Includes <stdio.h>
<stdlib.h>
<string.h>
"fileio.c" see Appendix B.

Constants

Global
Variables

integer

character

PATH_REC 3700
NUM_PATH 12700

maximum number of characters in a path file record
maximum number of path records capable of being read

num_rec counts the number of path records read from the input file

paths [] [] an array used to store every record read from the input file for use during the
sorting routine.

file *infp, *outfp pointers to the input and output files

3-43

Variables Variables local

extern character

integer

integer tog_infile
tog_outfile
tog_err
i

character ch
infilef]
outfileU

Component
Functions

char_comp()
qsort()

Function
Tree

Algorithmic
Description This module is i

*optarg points to the current command line argument
being parsed

optind not used

toggle to indicate input file was read in successfully
toggle to indicate output file was read in successfully
toggle to indicate an error in the command line arguments
general loop count variable

used to parse command line options
holds the name of the input file
holds the name of the output file

string comparison routine for qsort ()
standard 'C sorting routine

main () —qsort () —char_comp ()

This module is used to sort the records in the path file for MCI data. Essentially it reads
the input file into an array, passes the array to the standard 'C sort routine and prints the
result to the output.

The main () routine first conducts initialization steps: defines local variables;
processes command line arguments ; reads in the name of the input file and opens it in
read only mode; and reads in the name of the output file and opens it in write only
mode.

Then, the main algorithm of this function loads each record in the input file into the array
paths [] [] and passes the array to the standard 'C qsort () routine. Qsort () uses
char_comp () to sort records in ascending order and modifies the records of
paths [] [] until they are completely sorted. Finally this module prints the sorted
records from paths [] [] to the output file

3-44

3.9 clli3_4: Location to Switch Code Conversion module

Purpose This module addresses a shortfall in MCI data only. It converts the endpoints in path file
records from 3 character location codes to 4 character switch codes. Where more than
one switch resides at a location, all possible combinations are produced. This step is
necessary in order to correlate physical paths to trunk groups (which have switch code
endpoints) in the mat_trk module.

Call Syntax clli3_4 <filename>

where <fiiename> specifies the name of the input file containing a list of all other input
and output files

example clli3_4 MCIfiles.fy94

Input
Files list file This file simply contains the names of the two input files and one

output file. File names are limited by cili3_4 to a length of 50
characters.

format linel: <input path file name>
Iine2: <switch location file>
Iine3: <output path file name>

input
path file

format

Each record in this file, specifies the physical transmission path
between a pair of switches. A physical transmission path is defined
by the series of spans (from none for collocated switches to a limit of
662) that connect a switch pair. Spans are identified by indexes that
point to the appropriate record number in the span file.

<switch CLLI A>, <switch CLLI Z>, <span1>, <span2>
(c11,1x, c11,1x, i6, i6 i6)

example AST NYC 3045 3042 7579 237

switch
location file This file contains each MCI 4 character switch code, followed by its 3

character location code. The location code identifies the building in
which the switch is housed.

format <switch code>, «clocation code>
(c4,1x, c3)

example ASTI AST
AST2 AST
NYC1 NYC

Output
Files output

path file This file is in the same format as the input path file, except that each
path endpoint has been mapped from a location code to all possible
combinations of switch codes.

format same as input path file

3-45

example ASTl NYC! 3045 3042 7579 237
AST2 NYC1 3045 3042 7579 237

Includes <stdio.h>
<string.h>
"fileio.c" See Appendix B

Constants MAXLINE 4000 maximum number of characters in a path file record

Global
Variables

file *pathfile, *locfile, *outfile, *filelist
pointers to the input and output files

integer num_nodes counts the number of switches read from the switch location file

Character line[MAXLINE]
holds a line read from the input path file

Structure mapp_struct mapp[]

with field
character

used to hold each record in the switch
location file

mapp []. three holds MCI three character location code
read in from the switch location file

mapp [] . four holds MCI four character switch code
read in from the switch location file

Component
Functions

Function
Tree

Algorithmic
Description

openfiles()
readmappings()

createpathfile()

closefiles()

main()—

opens input and output files
reads in the list of switch and location codes from the
switch location file
maps the path endpoints from 3 character location codes to 4
character switch codes
closes input and output files

—openfiles()

-readmappings()

- createpathfile()

- closefiles()

This module addresses a shortfall in MCI data only. It converts the endpoints in path file
records from 3 character location codes to 4 character switch codes. Where more than
one switch resides at a location, all possible combinations are produced. For example, a
path between two locations which house 2 and 3 switches respectively would be
mapped to the 6 possible switch-to-switch paths. This module is required for the
subsequent running of the mat_trk module, which correlates the logical trunk group
file with the physical path file based on the switch endpoints of each record.

The main () routine passes the <f iiename> argument (the name of the file list file) to
openf iles (). Openf iles () opens all input and output files whose names are

3-46

contained in the file list. Then readmappings () is called to read the contents of the
switch location file into the mapp [] structure. Main() calls createpathf ile () to
apply the location-to-switch endpoint mapping to each record of the input path file,
thereby creating the output path file, ciosef iles () is called to close all files before
the module terminates.

3-47

3.9.1 openfiles function clli3 4 module

Inputs
character

Outputs
global

files string containing the name of the file that lists the three input/output files

returns

Purpose

Called By

Calls To

Local
Variables

character

Global
Variables

Algorithmic
Description

file *f ileiist points to the file whose name is contained in the files
string

*pathf ile points to the input physical transmission path file, using
location endpoints

*locf ile points to a file that lists the MCI 4 character switch codes
and corresponding3 character location codes

*outf ile filtered version of path file using switch endpoints
instead of location endpoints.

no formal values are returned

To open path and location input files and the output path file.

main()

none

tempf ile [50] this variable is used temporarily to hold the name of the next file to be
opened and read in from the list of files in f ileiist

none

This function opens the file whose name is stored in the string files, setting a file
pointer, f ileiist. Filelist contains a list of all the input/output files to be
opened in the following order: pathfile, locfile and outfile. This function
then proceeds to open each of these files, in the order they are read in from f ileiist,
assigning them to the matching file pointers.

Errors encountered during any file opening operation result in an error message being
printed to the screen, and termination of the module.

3-48

3.9.2 readmappings function clli3_4 module

Inputs none; operates on global variables

Outputs

global mapp_struct structure mapp []

with fields

holds the records from the switch
location file

character mapp [] . three
mapp[].four

holds MCI three-character location code
holds MCI four-character switch code

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

integer

file

Algorithmic
Description

no formal values are returned

To read the list of switch codes and corresponding location codes from the switch
location file, into the mapp [] structure.

main()

none

i general loop count variable

num_nodes the total number of switch records read

*iocf ile points to the switch location file

This function reads the switch location file line by line, loading each location code into
the mapp []. three field and each switch code into the mapp [] . four field, and
setting num_nodes to the total number of records in the switch location file.

3-49

3.9.3 createpathfile function clli3 4 module

Inputs none; operates on global variables

Outputs

returns no formal values are returned; outputs are written directly to the output file

Purpose This function maps the path endpoints from three character location codes to all
possible combinations of four character switch codes.

Called By main()

Calls To none

Local
Variables

integer i
len
foundl=0

found2=0

posl
pos2
first2

general loop count variable
used to hold the string length of a pathf ile line
a toggle used to indicate whether swl was found in the
mapp_struct structure
a toggle used to indicate whether sw2 was found in the
mapp_struct structure
the index of swl within the mapp_struct structure
the index of sw2 within the mapp_struct structure
temporarily holds the value of pos2

character swl
sw2

the originating endpoint of the current path
the terminating endpoint of the current path

Global
Variables

integer num_nodes the number of records in the pathf ile

character line[] a line of input from the pathf ile

structure mapp_struct

with fields
character

mapp [] used to hold each record from the switch
location file

mapp []. three three character location code
mapp []. four four character switch code

Algorithmic
Description This function processes the path file, record by record, loading the three character

location for the originating and terminating endpoints into the string variables swl and
sw2. Next this function searches the mapp [] structure for each of the four character
switch CLLI codes, at locations swl and sw2. A path record is printed to the output file
for every combination of switch CLLI code endpoints at locations swl and sw2

3-50

The following example illustrates the dataflow performed by createpathfile():

| input
Ipath
\ file

|sw-loc
mappings

\ output
path
file

I AST NYC 3045 3042 7579 237!

\
AST AST1 NYC N!

AST2 I

7 /
ASTl NYC1 3045 3042 7579 237

!:AST2 NYC2 3045 3042 7579 237

3-51

3.9.4 closefiles function clli3 4 module

Inputs

Outputs

global

returns

Purpose

Called By

Calls To

Local
Variables

Global
Variables

Algorithmic
Description

none; operates on global variables

file *pathfile points to a file that contains information on the physical
transmission paths between pairs of switches

*locf ile points to a file that contains the list of MCI 4 character
switch codes and 3 character location codes

*outfile filtered version of path file

no formal values are returned

To close path and location input files and the output file.

main()

none

none

none

This function closes the files whose names are pointed to by the following pointers:
pathfile, locfile and outf ile, in the order given.

3-52

3.10 mkpath: Make Path module

Purpose This module consolidates the trunk and path files output from mat_trk. Switch CLLI
codes are replaced with index numbers that reference the switch list.

Call Syntax mkpath <filename>

where <f iiename> specifies the name of the input file containing a list of all other input
and output files

example mkpath MCIfiles.fy94

Input
Files list file This file simply contains the names of the three input files and one

output file to be used by mkpath. File names are limited by mkpath
to a length of 50 characters.

format linel: <path file name>
Iine2: <switch file name>
Iine3: <trunk file name>
Iine4: <output file name>

switch file This file contains the list of codes for IEC backbone switches.

format <IEC switch CLLI code>
(C11)

trunk file The trunk file specifies the IEC switch CLLI codes of the trunk
endpoints, the number of trunks in the A to Z direction (or all bi-
directional trunks), and the number of trunks in the Z to A direction
(only used for one-way trunk groups). Each record is in 1 -to-1
correspondence with the path file. That is, the number of trunks in
the ntn trunk file record traverse the transmission path specified by
the ntn path file record.

format <switch CLLI A>, <switch CLLI Z>, <A->Z trunk quantity;», <Z->A
trunk quantity>
(c11,1x, c11,1x, i4,1x, i4)

path file

Output
Files

format

output trunk/
path file

Each record in this file, created by the mat_trk module, specifies
the physical transmission path between a pair of switches. A physical
transmission path is defined by the series of spans (from none for
collocated switches to a limit of 662) that connect a switch pair.
Spans are identified by indexes that point to the appropriate record
number in the span file.

<switch CLLI A>, <switch CLLI Z>, <span1>, <span2>,
(c11,1x,c11,1x, i6, i6 i6)

The output trunk/path file combines the logical trunk and physical
path records into a single record format that specifies trunk quantities

3-53

Includes

Constants

format

per physical path. The format specifies the index numbers of the IEC
switch endpoints, the number of trunks in the A to Z direction (or all
bi-directional trunks), the number of trunks in the Z to A direction
(only used for one-way trunk groups), and a series of span index
numbers that define the physical transmission path.

<switch index A>, <switch index Z>, <A->Z trunk quantity;», <Z->A
trunk quantity;«, <span1>, <span2>,...,
(i6, i6, i6, i6, [spans:] i6, i6 i6)

<stdio.h>
<string.h>
"fileio.c"

MAXPATH 4000
CLLI_LNG 12
MAXSW 200

See Appendix B

maximum number of characters in a path file record
length of a switch CLLI code, including terminating null character
maximum number of records in the switch file

Global
Variables

file

integer

character

structure

^pathfile, *switchfile, *trunkfile, *filelist, *outfile
pointers to the input and output files

num_nodes the number of records read in from the switch file

line [MAXPATH] used to hold a line of input from the path file
swiine [MAXSW] used to hold a line of input from the switch file

sw [MAXSW] Of type switch_struct
with fields:

character sw []. clli used to hold the list of switch CLLI codes

Component
Functions

Function
Tree

openfiles()
readswitches()
createpathfile()
closefiles()

opens input and output files
reads in the list of switches from the switch file
combines path and trunk records into a single output record
closes input and output files

main()—

—openfiles()

- readswitches()

- createpathfile()

- closefiles()

Algorithmic
Description This module performs the simple task of consolidating the trunk and path files output

from mat_trk and replacing switch CLLI codes with index numbers that reference the
switch list. Because the trunk and path file records are already in one-to-one
correspondence, mkpath essentially concatenates the two records into a single output
record format.

The program begins by calling openf iles () to open the input and output files. Next,
readswitches () is called to load the switch list into the sw[] structure. Then,
createpathf ile () is called to perform the main algorithm. This routine reads in a

3-54

path record and a trunk record. It parses the switch endpoint CLLI codes from the path
record, and searches through the switch structure to determine the corresponding
switch index numbers. The output record is written using these index numbers, along
with the trunk quantity and transmission path information. Note that no processing or
filtering is performed on either the trunk or path records.

The following example shows the data flow through mkpath that maps corresponding
path and trunk records into a single output record:

Path Record

ADMSTX0101T AKRNOH2505T 3045 3042 7579 237 7495 7572 3920 3234

Trunk Record

Spm
Indi ;es

ADMSTX0101T AKRNOH2505T 48 0

Switch Indices/ TrunlyQuantities

A ^ ^/ Output Record
f r r V
2 4 48 0 3045 3042 7579 237 7495 7572 3920 3234

3-55

3.10.1 openfiles function mkpath module

Inputs
character

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

character

Global
Variables

Algorithmic
Description

files string containing the name of the file that lists the five input/output files

file *filelist points to the file whose name is contained in the files
string

*pathf ile points to a file that contains information on the physical
paths and switches

*switchf ile points to a file that contains information on the backbone
network switches

* trunkf ile points to a file that contains information on the logical
trunks

*outf ile filtered version of path file

no formal values are returned

To open path, trunk and switch input files and the path output file.

main()

none

tempf ile [50] this variable is used temporarily to hold the name of the next file to be
opened and read in from the list of files in f ileiist

none

This function opens the file whose name is stored in the string files, setting a
filepointer to f ileiist. Filelist contains a list of all the input files to be opened
in the following order: pathfile, switchfile, trunkf ile, and outfile.
This function then proceeds to open each of these files, in the order they are read in
from f ileiist, assigning them to the matching filepointers.

Errors encountered during any file opening operation result in an error message being
printed to the screen, and termination of the module.

3-56

3.10.2 readswitches function mkpath module

Inputs none; operates on global variables

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

integer

Global
Variables

character

Algorithmic
Description

switch_struct structure sw []

sw[].clli

num_nodes

with fields
character

used to hold each record in the switch
file

holds switch endpoints read in from the
switchfile

used to count the number of records in
the switchfile

* switchfile points to the switch file

integer

file

no formal values are returned

To read the list of switch CLLI codes from the switch file into the sw [] structure

main()

none

i general loop count variable

swlinef] used to hold a line of input from the switch file

This function reads the switch file line by line, loading each CLLI code into the structure
sw [] and setting num_nodes to the total number of switches in the switch file.

3-57

3.10.3 createpathfiie function mkpath module

Inputs

Outputs

returns

Purpose

Called By

Calls To

Local
Variables

integer

character

none; operates on global variables

no formal values are returned; outputs are written directly to the output file

This function consolidates the trunk and path files output from mat_trk. Switch CLLI
codes are replaced with index numbers that reference the switch list.

main()

none

len
trunksizeA
trunksizeZ

tempi[]
temp2[]
trkline[]

general loop count variables
used to hold the string length of a pathf ile
the number of trunks in the A ->Z direction
the number of trunks in the Z ->A direction

line

used to hold the originating endpoint of a path
used to hold the terminating endpoint of a path
temporarily holds a record from the trunkf ile

Global
Variables

integer

character

Algorithmic
Description

num_nodes used to hold the number of records in the switchf ile

line [] used to hold a line of input from the pathf ile

This function processes the trunk and path files, record-by-record, combining the
information into a single output file record. For each line (record) in the trunk file, this
function parses the number of trunks in the A->Z and the Z->A directions, and stores
these fields in trunksizeA and trunksizez, respectively. For each line (record) in
the path file, the function parses the originating and terminating path endpoints, and
stores these fields in tempi and temp2, respectively.

This function then derives indices to replace switch CLLI codes by locating the position
of tempi/temp2 within sw []. A combined trunk/path record is written to the output file
as: switch 1 index, switch 2 index, trunksize of A, trunksize ofZ, spans (repeated from
input path record).

3-58

3.10.4 closefiles function mkpath module

Inputs none; operates on global variables

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

Global
Variables

Algorithmic
Description

fi'e *trunkf ile points to a file that contains information on the logical
trunks

*switchf ile points to a file that contains information on the backbone
network switches

*pathf ile points to a file that contains information on the physical
paths and switches

*outf ile combined and indexed trunk and path file

no formal values are returned

To close trunk, switch and path input files and the output file.

main()

none

none

none

This function closes the files whose names are pointed to by the following pointers:
trunkfile, switchfile, pathfile and outf ile, in the order given.

3-59

3.11 damage: Monte Carlo Damage module

Purpose

Call Syntax

For every network asset, this program generates a number of Monte Carlo damage
values. A damage value is either a 0 to indicate equipment failure, or a 1 to indicate
survival. Two general categories of assets are damaged: nodes and spans. Damage is
based on equipment type. Each type has a cumulative distribution function (CDF)
which defines the equipment's probability of failure. Specifically, this module is
designed to apply electromagnetic pulse (EMP) damage to network facilities.

i <filename> [options] damage
mandatory:

-i <filename>

options:
-a
-h

-s
_■?

<integer>

specifies the name (<f ilename>) of the input keyfile which
contains a list of the run parameters and input/output asset
filenames

adds a live damage vector to the output file
uses 10dB shielding CDF's for AT&T Series G fiber damage
rather than the default 6dB shielding (EMP specific)
uses AT&T Series G fiber CDF's without power supply failure
for damage rather than the default 6dB shielding (EMP
specific)
sets the random number stream (1-15)
user help-prints call syntax and exits without running

example damage -i ATTassetts.key -s 6 -a -h (spaces optional)

Input
Files keyfile This file contains the input parameters and asset filenames to be

used by damage. The parameters specify the type of damage to
perform (EMP vs. fallout radiation), the number of damage vectors to
generate in each of three intensity ranges (low, medium, and high),
whether to include the effects of switch upset, and the name of the
CDF file. CDF and asset file names are limited by damage to a length
of 80 characters.

format linel: <damage type>
either EMP or FR (fallout radiation)

Iine2: <number of low damage vectors>,<medium>,<high>
(i, 1x, i, 1x, i)

Iine3: <switch upset toggle>
either UPSET_ON or UPSETJDFF

Iine4: <CDF file name>
Iine5+: <node/span indicator (N/s)>,<asset file>,<damage file>

(c1,1x,c,1x,c)
example node file: N swi tchl ist swi tchl i s t. dmg
example span file: S spanlist spanlist.dmg

node file This file contains a list of switches. Each line contains an 11 -character
CLLI code followed by a 3-character equipment code (see algorithm
description for details). Any information following the equipment
type is ignored.

format: <switch CLLI code>,<equipment code>
(c11,1x, c3)

3-60

Output
Files

SPan fi|e This file contains the list of spans. Each line contains 2 11 -character
CLLI codes (the two span endpoints), a 2-character equipment code
(see algorithm description for details), and V-H coordinates for each
endpoint. Any information following the coordinates is ignored.

format: <CLLI A>,<CLLI Z>,<equipment code>,<V-coord A>,<H-coord A>,
<V-coord B>,<H-coord B>

(c11,1x, c11,1x, c2,1x, i5,1x, i5,1x, i5,1x, i5)

CDF file This file contains the data points for the CDF curves for all of the node
and span equipment to be damaged. Each CDF consists of 100 data
points listed 5 per line (i.e., 20 lines per curve). The file contains the
y-values of the curve for 0<x<1 in 0.1 increments. There are no
divisions or indicators between CDF's. The identity of each CDF is
given by a key in the damage code (described in the Constants
section below).

format <data point>,<data point>,<data point>,<data point>,<data point>
(e13.7, 1x, e13.7, 1x, e13.7, 1x, e13.7, 1x, e13.7)

output node file Each line of this file contains a CLLI code followed by a number of
damage values (0 indicates equipment, 1 indicates survival). Each
line contains the same number of damage values. This number of
specified in the keyfile.

format <switch CLLI A>, <damage values 1,2,3 n>
(c11,1x, il,il,n h)

output span file Each line of this file contains the two endpoint CLLI codes followed
by a number of damage values (0 indicates equipment, 1 indicates
survival). Each line contains the same number of damage values.
This number of specified in the keyfile.

format <CLLI A>, <CLLI B>, <damage values 1,2,3 n>
(c11,1x,c11,1x, i1,i1, i1 il)

Includes <stdio.h>
<math.h>
"fileio.c"
"/user/gretchen/waglib/waglib.h"

See Appendix B
Random number generator

Constants MAX_CDF 75
MAX_SUP 25
FALSE 0
NONE (-1)

ANASWT 0
DIGSWT 3
L4COAX 6
TIOFFC 9
T1LINE 12
FT3SWT 15
FT3RPT 18
MWTD2 21
ATT4ES 24
FOR140 27
DMS100 30

maximum number of CDF curves in a CDF file
maximum number of supplemental CDF curves in a CDF file
logical false
no curve selected

CDF index: generic analog switch
CDF index: generic digital switch
CDF index: L4 coaxial transmission system
CDF index: T1 carrier with office repeater
CDF index: T1 carrier with line repeater
CDF index: AT&T fiber carrier with FT3C terminal
CDF index: AT&T fiber carrier with FT3C repeater
CDF index: TD-2 analog microwave
CDF index: AT&T 4ESS switch (damage curve)
CDF index: Alcatel fiber carrier with R-R140 repeater
CDF index: NT DMS-100 switch (damage curve)

3-61

DMSUPS
ATT4EU
ATT5ES
ATT5EU
FTGDMG
FTGUPS
FTG6D
FTG6U
FD565
FTG10D
FTGIOU
FTGPSD 45
FTGPSU 45

33
36
39
42
45
48
45
54
57
60
63

SUPFTG6D 0
SUPFTG6U 3
SUPFTG10D 6
SUPFTG10U 9
SUPFD565 12
SUPFTGPSD 15
SUPFTGPSD 15

RAD4ES 0
RAD5ES 0
RADFOR 3

CDF index: NT DMS-100 switch (upset curve)
CDF index: AT&T 4ESS switch (upset curve)
CDF index: AT&T 5ESS switch (damage curve)
CDF index: AT&T 5ESS switch (upset curve)
CDF index: AT&T Series G fiber (damage curve)
CDF index: AT&T Series G fiber (upset curve)
CDF index: Series G with 6dB shielding (damage)
CDF index: Series G with 6dB shielding (upset)
CDF index: NTI FD-565 fiber terminal
CDF index: Series G with 10dB shielding (damage)
CDF index: Series G with 10dB shielding (upset)
CDF index: Series G ignoring damage to power supply (damage)
CDF index: Series G ignoring damage to power supply (upset)

CDF index: Series G (6dB) supplemental data points
CDF index: Series G (6dB) supplemental data points
CDF index: Series G (10dB) supplemental data points
CDF index: Series G (10dB) supplemental data points
CDF index: FD-565 supplemental data points
CDF index: Series G (power supply) supplemental data points
CDF index: Series G (power supply) supplemental data points

CDF index: AT&T 4ESS fallout radiation curves
CDF index: AT&T 5ESS fallout radiation curves
CDF index: fiber optic fallout radiation curves

Local
Variables

integer

Variables local to main ():

err
itog
stog
htog
ptog
VA
HA
VZ
HZ
i
j
count
optind
arge

an error flag indicating a problem with the command line arguments
a flag indicating that the -i command line option is set
a flag indicating that the -s command line option is set
a flag indicating that the -h command line option is set
a flag indicating that the -p command line option is set
vertical coordinate of node A
horizontal coordinate of node A
vertical coordinate of node Z
horizontal coordinate of node Z
an index variable
an index variable
an output counter
the number of a single command line arguments
the number of command line arguments

character input_f ile [50] used to read a file name from a prompt
ch a single character
l ine [100] holds a single input line from a file
temp [6] used to parse a line
ciiiA[l2] the CLLI code for node A
ciiiz[l2] the CLLI code for node Z
equip [4] an equipment code
*optarg a string containing a single command line argument
* *argv [] an array containing all of the command line arguments

file pointer fptr file pointer
inptr input file pointer
outptr output file pointer

3-62

structure *ptrlist of type flist
with fields:

character ptrlist.in
ptrlist.out

pointer ptrlist.ptrnext

input file
output damage file
points to next item in ptrlist list

Global
Variables

integer

double

character

MODE
UPSET
LIVE_VEC
NODE_DMG
SPANJDMG
FTG_DMG_PTR
FTG_UPS_PTR
tot_iter[3]
tot_cdf
PSTOG
num_nodes
num_spans
node_stats[6]

damage mode (0=EMP, 1=fallout radiation)
switch upset toggle (0=off, 1=use upset curves)
toggle to add live vector to output (0=off, 1=on)
toggle to indicate if node file is present (1) or absent (0)
toggle to indicate if span file is present (1) or absent (0)
pointer to the Series G damage CDF curves in use (e.g., 6dB)
pointer to the Series G upset CDF curves in use (e.g., 6dB)
number of Monte Carlo iterations (low, medium, and high)
number of CDF curves loaded
toggle to use Series G curves without power supply damage
number of nodes read for damage
number of spans read for damage

span_stats[ll]
counts the number of each node category

counts the number of each span category
total number of spans included for average length
s[ll][2][3]
span damage stats by category (out of 11) and damage level (of 3)

node_dmg_stats[6][2][3]
node damage stats by category (out of 6) and damage level (of 3)
random number stream #1
random number stream #2
fiber diagnostic variable

length_count
span_dmg_s tat

stream_numl
stream_num2
Fcount

Fsum fiber diagnostic variable
cdf_table[MAX_CDF][100]

100-point CDF curves
supp_cdf_table[MAX_SUP][100]

100-point supplemental CDF curves
length_sum[11]

sum of span lengths (by category)
length_sumsqr[11]

sum of span lengths squared (by category)

cdf _f ile [81] name of the main CDF file
analog_switch_types[]

contains the 3-character switch equipment codes which are assigned
to the generic analog switch CDF curve for damage

digital_switch_typesl[]
contains half of the 3-character switch equipment codes which are
assigned to the generic digital switch CDF curve for damage

analog_switch_types2[]
contains half of the 3-character switch equipment codes which are
assigned to the generic digital switch CDF curve for damage

nt_digital_types[]

3-63

contains the 3-character switch equipment codes which are assigned
to the DMS-100 CDF curve for damage

structure nodefiles of type flist
with fields:

character nodefiles. in input node file
nodefiles. out output damage file

pointer nodefiles .ptmext points to next item in nodefiles list

spanfiles oftype flist
with fields:

character

pointer

spanfiles. in input span file
spanfiles. out output damage file
spanfiles .ptmext points to next item in spanfiles list

EQ list.EQ ptr oftype EQ
with fields:

character EQ_list.eq_type[4] equipment code
integer EQ_list. f req number of occurrences
pointer EQ_list .ptmext points to next item in EQ_list list

Component
Functions LoadKey()

TallyUnknown()

LoadCDF()
LoadSuppCDF()
detprb()

Survive()
DmgNode()
DmgSpan()
PrintNodeStats()
PrintSpanStats()

opens and reads the keyfile
counts the number of times an unknown equipment type is
found in an asset file
loads a CDF file into memory
loads supplemental CDF data into memory
picks a random point from a CDF curve and returns a
probability associated with that point
returns a random survival value based on a CDF curve
generates a series of damage vectors for one node
generates a series of damage vectors for one span
prints summary node statistics
prints summary span statistics

3-64

Function
Tree

Algorithmic
Description

—LoadKey()

-LoadCDF()

-LoadSuppCDF()

mainO — -DmgNodeO t TallyUnknownO Survive()— detprb()

-PrintNodeStats()

DmgSpan()

*- PrintSpanStats()

—TallyUnknown()

- Survive()— detprb()

- detprb()

This module uses equipment survivability data to determine probabilistically the survival
or failure of network equipment. This module was designed to interpret CDF curves
representing the probability of damage due to EMP effects. Tests have been
performed on a number of switching and transmission systems. For each equipment
type, physical survivability CDF curves were calculated for each of the three EMP stress
levels (low, medium, and high). In addition, switch upset CDF curves were calculated for
four equipment types. The constants section above details the available EMP CDF
curves.

This set of equipment represents a major portion, although not a comprehensive set, of
the equipment types employed in the PSN. There are no EMP test data for some
network equipment types. Rather than assume they survive EMP damage, equipment
types that have not been tested are assigned the survivability of the tested equipment
type that they most closely resemble.

The general procedure for testing equipment failure (referred to as the "CDF Tesf) is
the following:

1) Pick a random number, Y (uniform distribution, 0-1).
2) Find the x-value, X, on the CDF curve corresponding to the y-value, Y.
3) Pick a second random number, A (uniform distribution, 0-1).
4) If A<X then the equipment survives the CDF Test, otherwise it fails.

EMP node damage is the simplest to assess. To survive EMP damage, a node need
only pass a single CDF Test with the CDF curve to which the equipment has been
assigned. To survive switch upset, a node must pass the damage CDF Test plus an
additional test with the assigned EMP upset curve. Switch upset does not apply to
equipment assigned to the Generic Analog CDF curve.

EMP span damage is more complex. In general, a minimum of two CDF Tests are
required to determine survival/failure—one CDF Test for each endpoint. However, long
spans which require intermediate repeater equipment will require additional CDF Tests
for the additional equipment. The assumed spacing between repeaters varies by
equipment type: 23 miles for optical fiber, 26 miles for microwave, and 1 mile for T1.

Two additional exceptions apply to span damage. First, T1 links longer than 50 miles
are assumed to be data errors, and are assigned to the Series G optical fiber CDF curve.
Second, LEC spans are assumed to be 80% fiber and 20% T1.

3-65

A final consideration for Series G fiber damage. Several CDF curves are available for this
span type based on a number of assumptions. The default Series G curves assume
6dB shielding around the repeaters. Using the -h option, the user may assess Series
G damage using the 10dB shielding curves. Additionally, the -p option assess Series
G damage using curves which do not consider damage to the equipment power
supplies. Options -h and -p may not be used together.

After the command line arguments have been parsed and interpreted, main ()
executes in the following order:

1) Calls LoadKey () to open and interpret the keyfile.

2) Calls LoadCDF () to load the main CDF file.

3) Calls LoadSuppCDF () to load the supplemental CDF file, this file contains 100
additional data points between 0.9 and 1.0 for certain equipment.

4) For each node record in the first node file, calls DmgNode () to produce damage
vectors for that node. DmgNode () writes the output data to an output damage file.

5) Calls PrintNodeStats () to get summary damage statistics for the node file.

6) Prints a summary of all unknown switch equipment types found in the file.

7) Repeats Steps 4 through 6 for each node file specified by the keyfile.

8) For each span record in the first span file, calls DmgSpan () to produce damage
vectors for that span. DmgSpan () writes the output data to an output damage file.

9) Calls Printspanstats () to get summary damage statistics for the span file.

10) Repeats Steps 8 and 9 for each span file specified by the keyfile.

3-66

3.11.1 LoadKey function damage module

Inputs
file

Outputs
globals

Purpose

Called By

*fptr'

integer MODE
tot_iter[3]
UPSET

a file pointer to the keyfile (already opened)

the damage mode (0=EMP, 1=fallout radiation)
the number of low, medium, and high iterations
toggle for switch upset (0=off, 1=on)

character cdf_f ile [] the name of the main CDF file

Structures nodefilesand spanfiles of type f list
with fields:

character in [] input asset file
out [] output damage file

pointer 'ptmext points to next item in list

To load run parameters from the keyfile.

main()

Calls To none

Local
Variables

integer

character

pointer to
structures

Global
Variables

count holds the current line number in the keyfile
flag error flag

line [80] holds an entire line from the keyfile
inf ile [81] temporarily holds the name of an input asset file
outf ile [81] temporarily holds the name of an output damage file
type a single character holding the type of asset file (N=node, S=span)

*ptmew points to a new f list entry to be inserted into a list
*ptrlastspan points to the end Of the spanfiles list
*ptrlastnode points to the end of the nodef iles list

none

Algorithmic
Description This function reads each line of the keyfile and sets run parameters according to entries

in the keyfile. All of the run parameters are held in global variables. The line-by-line
structure of the keyfile is shown in the damage module description.

3-67

3.11.2 LoadCDF function damage module

Inputs
file cfptr a pointer to the main CDF file (already opened)

Outputs
globals double cdf_tabie[MAX_CDF] [loo]

100-point CDF curves
tot_cdf the number CDF curves loaded

Purpose To load CDF curves from the main CDF file.

Called By main()

Calls To none

Local
Variables

integer i
count
tog
pcount

character line[100]
temp[15]

Global
Variables none

Algorithmic
Description This functior

an index variable
the line number of the current CDF curve
toggle to indicate that the 50% point has been passed on the curve
cycles from 0 to 2 to indicate low, medium, or high stress levels

holds an entire line from the CDF file
used to parse a CDF data point from line

This function parses each line of a CDF file to extract 5 y-values from a 100-point CDF
curve. The curves are assumed to be grouped by the three EMP stress levels (low,
medium, and high). The structure of the CDF file is described in the damage module.

3-68

3.11.3 LoadSuppCDF function damage module

Inputs
file *ftg_fd565..cdf_supp

the supplemental CDF file for Series G and FD-565

Outputs
globals double supp_cdf_tabie[MAx_sup] [ioo]

100-point supplemental CDF curves

Purpose To load supplemental CDF curves from the supplemental CDF file.

Called By main()

Calls To none

Local
Variables

file *fptr

integer i
count
tog
pcount

character line[100]
temp[15]

Global
Variables none

Algorithmic
Description This functior

pointer to the supplemental CDF file

an index variable
the line number of the current CDF curve
toggle to indicate that the 50% point has been passed on the curve
cycles from 0 to 2 to indicate low, medium, or high stress levels

holds an entire line from the CDF file
used to parse a CDF data point from line

This function parses each line of the supplemental CDF file to extract 5 y-values from a
100-point supplemental CDF curve. These points correspond to CDF x-values
between 0.9 and 1.0. The curves are assumed to be grouped by the three EMP stress
levels (low, medium, and high). The structure of the supplemental CDF file is identical
to the main CDF file (described in the damage module).

3-69

3.11.4 DmgNode function damage module

Inputs

character

integer

c 11 iA [] the 11 -character switch CLLI code
equip [] the 3-character switch equipment code

MODE the damage mode (0=EMP, 1=fallout radiation)
UPSET the switch upset mode (0=off, 1=on)
LIVE_VEC the toggle to add an output live vector (O=off, 1=on)
tot_iter [3] the number of vectors to generate (low, medium, high)

file ^outptr pointer to the output damage file

Outputs

global

Purpose

Called By

integer node_stats [6] counts the number of nodes in each node category
node_dmg_stats[6][2][3]

node damage stats by category (out of 6) and damage
level (out of 3) where the middle subscript allows for
holding live and damage totals

Generates damage vectors for a single node.

main()

Calls To TallyUnknown()
Survive()

Local
Variables

integer column an index into the CDF table pointing to the damage curve
upset_col an index into the CDF table pointing to the upset curve
bin the EMP stress level (0=low, 1=medium, 2=high)
it iteration loop variable
surviv node equipment survival (1) or failure (0)

Global
Variables none

Algorithmic
Description This function generates the number of damage vectors specified by tot_iter [].

Damage is based on the type of node equipment and the level of EMP damage being
assessed. Damage may be based on EMP or fallout radiation curves (based on MODE),
and may include the effects of switch upset (based on UPSET). Finally, a live damage
vector may be added to the beginning of the output damage stream (based on
LIVE_VEC).

For a given node, the following procedure is followed:

3-70

1) Assign damage and upset CDF curves to the node based on the input
equipment type. If the equipment code is "unknown," then call
TaliyUnknown () with the code. Assume equipment is of type 5ESS.

2) Call Survive () with the base CDF curve (column) plus the stress level (bin).
Survive () returns 1 (survive) or 0 (fail).

3) If the node survives Step 2 and UPSET is on, then call survive () with the upset
CDF curve (upset_col) plus the stress level (bin). Survive () returns 1
(survive) or 0 (fail).

4) If the node survives both Steps 2 and 3, then print a T to the output damage file.
Otherwise, print a 'o'.

5) Tally up the damage stats in node_dmg_stats [].

6) Repeat Steps 2 through 5 for the number of iterations specified by tot_iter []
for the current EMP stress level.

7) Repeat Step 6 for each EMP stress level.

3-71

3.11.5 PrintNodeStats function damage module

Inputs none

Outputs none

Purpose To print summary statistics for each node type.

Called By main()

Calls To none

Local
Variables none

Global
Variables

integer node_stats [6]

Algorithmic
Description

node_dmg_stats[6][2][3]
counts the number of nodes in each node category

node damage stats by category (out of 6) and damage
level (out of 3) where the middle subscript allows for
holding live and damage totals

This function prints out node statistics. For each category equipment (e.g., 4ESS), the
total number of nodes in the category are printed, as well as the percentage of all nodes
that that category accounts for. Finally, the percentage of node damaged at each EMP
stress level (low, medium, high) is shown.

3-72

3.11.6 DmgSpan function damage module

Inputs

character

integer

file

clliA[]
clliZ[]
equip[]

MODE
UPSET
LIVE_VEC
tot_iter[3]
VA
HA
VZ
HZ

*outptr

the 11-character originating CLLI code
the 11-character terminating CLLI code
the 2-character switch equipment code

the damage mode (0=EMP, 1=fallout radiation)
the switch upset mode (0=off, 1=on)
the toggle to add an output live vector (O=off, 1=on)
the number of vectors to generate (low, medium, high)
the V-coordinate of ciliA
the H-coordinate of ciliA
the V-coordinate of cliiz
the H-coordinate of cliiz

pointer to the output damage file

Outputs

global

Purpose

Called By

integer span_stats [11] counts the number of spans in each span category
span_dmg_stats[ll][2][3]

span damage stats by category (out of 11) and damage
level (out of 3) where the middle subscript allows for
holding live and damage totals

Generates damage vectors for a single span.

main()

Calls To TallyUnknownO
Survive()
detprb()

Local
Variables

integer column
upset_col
bin
it
surviv
i
n
equip_type

double D
fo_prob
tl_prob
probl
prob2

an index into the CDF table pointing to the damage curve
an index into the CDF table pointing to the upset curve
the EMP stress level (0=low, 1=medium, 2=high)
iteration loop variable
node equipment survival (1) or failure (0)
in index variable
the number of times a CDF Test must be repeated
a code number indicating the equipment category

the length of a span
the survival probability of a LEC fiber span
the survival probability of a LEC T1 span
an aggregate survival probability of a LEC span
a random number

3-73

Global
Variables none

Algorithmic
Description This function generates the number of damage vectors specified by tot_iter [].

Damage is based on the type of span equipment, the length of the span, and the level
of EMP damage being assessed. Damage may be based on EMP or fallout radiation
curves (based on MODE), and may include the effects of switch upset (based on UPSET).
Finally, a live damage vector may be added to the beginning of the output damage
stream (based on LIVE_VEC).

For a given span, the following procedure is followed: (NOTE: Pages 9-14 of
Reference 5 contains a complete description of the damage procedure.)

1) Calculate the length of the span.

2) Decode the equipment type and assign a code to variable equip_type. This
code may reflect a change in equipment type (e.g., long T1s are assumed to be
Series G optical fiber). If the equipment code is "unknown," then call
TaiiyUnknown () with the code. Assume the equipment is of Series G optical
fiber.

3) Accumulate average length statistics for the equipment type.

4) Assign damage and upset CDF curves to the span based on equip_type.

5) For most equipment types, determine the number of repeaters based on the
span length.

6) Call survive () for each endpoint and for each repeater.

7) If the span survives all of the CDF Tests in Step 6 and UPSET is on, then call
Survive () for each endpoint and repeater using the upset CDF curve. (NOTE:
only Series G has upset curves.

8) If the span survives both Steps 6 and 7, then print a T to the output damage file.
Otherwise, print a '0'.

9) Tally up the damage stats in span_dmg_stats [].

10) Repeat Steps 6 through 9 for the number of iterations specified by tot_iter []
for the current EMP stress level.

11) Repeat Step 10 for each EMP stress level.

3-74

3.11.7 PrintSpanStats function damage module

Inputs none

Outputs none

Purpose To print summary statistics for each span type.

Called By main(]

Calls To none

Local
Variables

double

Global
Variables

mean
sdev

average length of spans in a category
standard deviation of the length of spans in a category

integer

Algorithmic
Description

span_stats [li] counts the number of spans in each span category
span_dmg_stats[ll] [2] [3]

span damage stats by category (out of 11) and damage level (out
of 3) where the middle subscript allows for holding live and
damage totals

This function prints out span statistics. For each category equipment (e.g., T1), the
total number of spans in the category are printed, as well as the percentage of all spans
that that category accounts for. The average length of the spans in the category is also
printed. Finally, the percentage of spans damaged at each EMP stress level (low,
medium, high) is shown.

3-75

3.11.8 TallyUnknown function damage module

Inputs
character

Outputs
globals

Purpose

Called By

equip[] a 3-character equipment code

structure EQiist of type EQ
with fields:

character eq_type [4]
integer freq
pointer ptmext

equipment code
number of occurrences
points to next item in EQ_iist

To maintain a list of unknown equipment codes and the number of times each code
appears..

DmgNode()
DmgSpan()

Calls To none

Local
Variables

integer flag

pointer to
structures EQ_ptr

EQ_new
EQ_prev

Global
Variables none

Algorithmic
Description There are

an indicator variable

points to an EQ entry
points to a new EQ entry to be inserted into EQ_list
points to an EQ entry

There are hundreds of equipment codes in use in the LECs. Not all of these codes
have been assigned to a CDF curve. This routine tallies these "unknown" codes for
each data file. Upon being sent an unknown code, this routine checks the existing list
of codes (EQ_list). If found, then the number of occurrences is incremented.
Otherwise, the code is added to the end of the list.

3-76

3.11.9 Survive function damage module

Inputs
integer curve

Outputs
returns integer

a CDF curve number

returns either TRUE (1) indicating survival or FALSE (0) indicating
damage

Purpose To determine equipment survivability from a specified CDF curve.

Called By DmgNodeO
DmgSpan()

Calls To detprbO

Local
Variables

integer

double

answer

probl
prob2

holds the return value (survival or failure)

a random probability from the CDF curve
a random number (uniform, 0-1)

Global
Variables

integer stream_num2 random number stream #2

Algorithmic
Description This function performs a single "CDF Test" described in the damage module. It picks a

random probability from a specified CDF curve (probl) and compares it with a random
number (prob2). If probi>prob2 and probl does not equal 0, then Survive returns
TRUE (1) indicating equipment survival. Otherwise, it returns FALSE (0) ind

3-77

3.11.10 detprb function damage module

Inputs
integer curve

Outputs
returns double

the number of a CDF curve

the probability associated with a random point on the input CDF
curve

Purpose This routine picks a random point on the input CDF curve and returns the associated
probability. For Series G and FD-565 optical fiber equipment, supplemental data points
are read from supplemental CDF curves to improve the precision of the curves. The
supplemental data is used if the random probability falls between 0.9 and 1.0.

Called By survive ()
DmgSpan()

Calls To none

Local
ariables

integer i
sup_tog
sup_ptr

double point
prob

character line[80

Global
Variables

integer

double

Algorithmic
Description

an array index number
flag to indicate that the supplemental CDF's should be used
the supplemental CDF curve associated with the main CDF curve

the random CDF point
the probability associated with point

holds an entire line from the keyfile
inf ile [81] temporarily holds the name of an input asset file
outfile[8l] temporarily holds the name of an output damage file
type a single character holding the type of asset file (N=node, S=span)

stream_numl random number stream #1

cdf_table[MAX_CDF][100]
100-point CDF curves

supp_cdf_table[MAX_SUP][100]
100-point supplemental CDF curves

For a specified CDF curve (curve), this routine returns a random probability based on
the following procedure:

1) Return 0.0 if the first curve data point is 1.0 (i.e., curve is all dead).

2) Return 1.0 if the last curve data point is 0.0 (i.e., curve is all alive).

3) Pick a random number, A.

3-78

4) Step from right to left through the CDF curve until the y-value of the current data
point is less than A.

5) Check if a supplemental CDF curve is necessary.

6) If not, then return the x-value of the final data point divided by 100.

7) If a supplemental CDF is necessary, then step from right to left through the
supplemental CDF curve until the y-value of the current data point is less than A.

8) Return the 0.9 plus the x-value of the final data point divided by 1000.

3-79

3.12 mklink: Make Link module

Purpose This module assesses the effect of span and node damage on an IEC network's
physical transmission paths. Physical damage is translated into lost trunk group capacity
in the logical network.

Call Syntax mklink <filename>

where <f iiename> specifies the name of the input file containing a list of all other input
and output files

example mklink MCIfiles.fy94

input
Files list file This file simply contains the names of the three input files, one

output file, and two user-specified parameters to be used by
mklink. File names are limited by mklink to a length of 50
characters.

format

damaged
switch file

format

damaged
span file

format

example

trunk/path file

linel: <combined trunk/path file name>
Iine2: <damaged switch file name>
Iine3: <damaged span file name>
Iine4: <output "qlink" file name>
Iine5: direction flag (0 = bi-directional; 1 = one-way)
Iine6: damage vector count (integer)

This file contains the list of codes for IEC backbone switches,
followed by a user-specified number of damage vectors, where 0
specifies that the switch has been damaged, and 1 specifies that it is
functional.

<IEC switch CLLI code>, <damage vector string of 0/1's>
(d 1, 1x, n(i1)), where n is number of damage vectors

example ADMDTXOIOIT lioiliiioonoi

This file contains the list of IEC network spans, specified by the span
endpoint codes, followed by a user-specified number of damage
vectors. Span endpoint codes that are not full 11-character CLLI
codes are padded with blanks.

<endpoint A code>, <endpoint B code>, <damage vector string of
0/1's>
(d 1,1 x, d 1,1 x, n(i1)), where n is number of damage vectors

AKRNOHXX ALBQNM2505T 11011111001101

This is the file produced by the mkpath module, which details how
many trunks traverse each physical path in the IEC network. The file
specifies the IEC switch CLLI codes of the trunk/path endpoints, the
number of trunks in the A to Z direction (or all bi-directional trunks),
the number of trunks in the Z to A direction (only used for one-way

3-80

Output
Files

Includes

Constants

Global
Variables

format

output
'alink' file

format

<stdio.h>
<string.h>
<math.h>
"fileio.c"

trunk groups), and a series of span index numbers that define the
physical transmission path.

<switch inaex A>, <switch index Z>, <A->Z trunk quantity>, <Z->A
trunk quantity>, <span1>, <span2>,...,
(i6, i6, i6, i6, [spans:] i6, i6 i6)

This file essentially replaces the path information (string of span
indices) from the trunk/path file with a damage vector that indicates
whether the path is damaged. In addition, since there is only one
trunk size field in each qlink output record, a one-way Z->A trunk
group (the second trunk group field in the input trunk/path file) is
handled by creating a second qlink record, with the endpoints placed
in reverse order. In this sense, the ordering of endpoints in the qlink
file may represent the directionality of the trunk group. A record
number has been added as the first field.

<record #>, <switch index A>, <switch index Z>, <trunk quantity:»,
<damage vector string of 0/1 's>
(i5, i4, i4, i4,1x, n(i1)), where n is number of damage vectors

example 391 22 23 48 llOlllllOOHOl
392 22 24 96 01110111101011

See Appendix B

MAXLENGTH 4000
CLLI_LNG 12
MAX_ITER 101
PATHPRINT 9
DMGPRINT 84
MAX_SPAN_REC 9000

maximum number of characters in a path file record
length of a switch CLLI code, including terminating null character
maximum number of switch and span damage vectors allowed
defines a path record case for which to print debug data
defines a damage vector case for which to print debug data
maximum number of records in the span file

file

integer

character

structure

*pathfile, *switchfile, *spanfile, *filelist, *linkfile
pointers to the input and output files

direction indicates use of bi-directional (0) or one-way (1) trunk groups
damage_vec specifies number of damage vectors in each damaged switch and

span file record

span_damage[MAX_SPAN_REC][MAX_ITER]
holds the damage vectors for each span file record (e.g.,
span_damage [390-1] [4-1] specifies the fourth damage vector
for span index 390)

sw[200] of type switch_struct
with fields:

character sw[] .clli
character sw[] .damage

used to hold the list of switch CLLI codes
used to hold the switch damage vectors

3-81

Component
Functions

Function
Tree

Algorithmic
Description

openfiles()
readswitches()

readspans()

createlink()

closefiles()

opens input and output files
reads in the list of switches and switch damage vectors from
the damaged switch file
reads in the list of spans and span damage vectors from
the damaged span file
maps damage to each trunk/path record and generates
output file
closes input and output files

—openfiles()

— readswitches()

main() — ~ readspans()

— createlinkO

— closefilesO

The physical IEC network is composed of switches and spans (e.g. repeater-to-repeater
transmission segments). Damage to switches and spans is represented
deterministically as a set of scenarios, or damage vectors, where a value of 0 represents
failure of that asset, and a value of 1 represents no damage. The purpose of this
module is to determine the effect of damaged switches and spans on the logical IEC
network (i.e. point-to-point trunk group sizes). Damage to these individual network
components is mapped to an entire physical transmission path (two switch endpoints
connected by a series of spans) to determine if the path fails or survives. The logical
network capacity is then adjusted for damage based on the number of trunks that
traverse the path.

Mkiink is an important module because it maps physical damage onto the logical
network, so that the significant quantity of physical path data does not need to be
carried forward in the data flow to subsequent TAMI modules. The output 'qlink' file will
contain the pool of IEC network damage scenarios required for the Monte Carlo
sampling methodology employed by TAMI.

The module requires two user-specified run-time parameters, scanned in from line 5
and 6 of the input file. The first is a direction flag, which tells the module whether it
should look for one-way trunk group quantities (in both the A->Z and Z->A columns of
the trunk/path file) or a single bi-directional trunk group quantity from the A->Z column.
The second option is the damage vector count. This parameter tells the module how
many damage vectors to expect to read from the damaged switch and span files.

The goal of this module is to evaluate each record in the trunk/path file for damage,
replacing the long series of span indices with a string of evaluated 0/1 values that
indicate whether the path is damaged or functional for each damage vector. To
evaluate the effect of the ntn damage vector on a path, the following series of lookups
is performed:

1) For each path endpoint, look up the ntn damage vector in the list of damaged
switches. If either switch endpoint is damaged, the entire path is damaged; if not,
we must continue evaluating damage in the next step.

3-82

2) For each span in the path record, look up the ntn damage vector in the damaged
span file. If the span is damaged, the entire path is damaged; if not, we must
continue evaluating damage for the next span in the path.

3) If both switch endpoints and all of the spans in a path are undamaged, then the
path is undamaged; if at least one part of the path is damaged, the entire path is
damaged.

The qlink output file format only supports one trunk quantity field; therefore, in the case
of one-way trunk groups, a trunk/path record containing both an A->Z and a Z->A trunk
quantity will result in two qlink output records, the first with endpoints A and Z, and the
second with endpoints Z and A.

The code for this module is straightforward. The main () routine passes the
<f iiename> argument into openf iles (), which opens input and output files and
reads in the user-specified directional flag and number of damage vectors. It then calls
readswitches () and readspans () to load the list of switches and corresponding
damage vectors, and spans and corresponding damage vectors. Createlink () is
called next to perform the damage checking algorithm described above. This routine
reads in a trunk/path record, evaluates the switch endpoints for damage, and if
necessary, evaluates each component span for damage. Results are printed directly to
the output file. If one-way trunk groups are being employed, the createlink ()
function will print two qlink output records-one for each direction, ciosef iles () is
called to close all open files before the module terminates.

3-83

3.12.1 openfiles function mklink module

Inputs
character

Outputs

global

returns

Purpose

Called By

Calls To

Local
Variables

character

Global
Variables

Algorithmic
Description

files string containing the name of the file that lists five input/output files, a
trunk group directionality indicator and a damage vector count

file *fiielist points to the file whose name is contained in the files
string

*pathfiie points to a file that contains information on the physical
paths and trunk sizes

*switchf ile points to a file that contains information on damage to the
backbone network switches

*spanf ile points to a file that contains information on damage to the
backbone network spans

*linkf ile output QTCM link file

integer direction equals 1 if uni-directional trunk groups are being used
damage_vec the number of damage vectors in the switch and span

damage files

no formal values are returned

To open path, switch and span input files and the QTCM-link output file, and to read in
the trunk group directionality indicator vector and the damage vector count.

main()

none

tempf ile [80] this variable is used temporarily to hold the name of the next file to be
opened and read in from the list of files in f ilelist

none

This function opens the file whose name is stored in the string files, setting a
filepointer to f ilelist. Filelist contains a list of all the input files to be opened
in the following order: pathfile, switchfile, spanfile, and linkfile. It
also contains a trunk group directionality indicator, direction, and a damage vector
count, damage_vec. This function opens each of the input/output files, in the order
they are read in from f ilelist.

Errors encountered during any file opening operation result in an error message being
printed to the screen, and termination of the module.

3-84

3.12.2 readswitches function

Inputs none; operates on global variables

Outputs

global switch_struct structure sw []

with field
character sw[] .ciii

sw[].damage

mklink module

used to hold each record in the switch
file

holds switch endpoints read in from the
switchfile
holds damage vectors for the switches

returns no formal values are returned

Purpose To read the list of switch CLLI codes and damage vectors from the switch damage file
into the sw [] structure, and to compute summary switch survivability statistics.

Called By main()

Calls To none

Local
Variables

integer

float

num_nodes
num_live

dam_temp
len

num_surv
min_surv
max_surv
totsurv

character iine[]

Global
Variables

general loop count variables
counts the number of records read in from the switch file
counts the number of undamaged switches for a given damage
vector
temporarily holds the damage vector read in from the sw [] structure
toggle indicating end-of-file or length of valid record

the switch survivability percentage for the current damage vector
minimum percentage of surviving switches
maximum percentage of surviving switches
the sum of the values of num_surv

used to hold a line of input from the switch file

file *switchfiie points to the switch file

Algorithmic
Description This function has two distinct sections.

The first section reads the switch file line by line, loads each CLLI code and damage
vector into the sw [] structure, sets num_nodes equal to the number of switches, and
prints out num_nodes to the screen.

The second section computes a number of switch survivability statistics, including the
cases (damage vectors) that result in minimum and maximum switch survivability over all
damage vectors

3-85

3.12.3 readspans function mklink module

Inputs

Outputs

global

none; operates on global variables

character span_damage[] used to hold the span damage vector from the
span file

returns

Purpose

Called By

Calls To

Local
Variables

integer

float

file

Algorithmic
Description

no formal values are returned

To read the list of span damage vectors from the span damage file, into the
span_damage array, computing summary survivability statistics in the process.

main()

none

1, 3
num_spans
num_live

dam_temp
len

num_surv
min_surv
max_surv
totsurv

character linef]

Global
Variables

*spanfile

general loop count variables
counts the number of records read in from the span file
counts the number of spans that are not marked as damaged in the
span_damage array
temporarily holds the value read in from the span_damage array
boolean toggle indicating end-of-file

percentage of surviving spans for a given damage vector
minimum percentage of surviving spans
maximum percentage of surviving spans
the sum of the values of num_surv, used to calculate average
survival percentage over all damage vectors

used to hold a line of input from the span file

points to the span file

This function has two distinct sections

The first section reads the span file line by line, loads each damage vector into the
span_damage array, sets num_nodes equal to the number of spans, and prints
num_nodes to the screen as a summary statistic.

The second section, computes further summary statistics, including the minimum and
maximum survivability for a given damage vector, and the average survivability over all
damage vectors. For each damage vector in the span_damage array, it parses the
vector, character by character, and loads each character into a temporary variable,
dam_temp. If the span is undamaged, this routine increments the functional span
counter, num_live

3-86

After the number of functional spans has been counted, this routine calculates the
span survival percentage (the ratio of functional spans to total spans) and adds this
result to a running total, tot_surv.

As the function computes span survivability percentages for each damage vector, it
keeps track of the minimum and maximum span survivability.

Finally this function prints the minimum and maximum span survivability of a single
damage vector, and the average span survivability over all damage vectors.

3-87

3.12.4 createlink function mklink module

Inputs

Outputs

returns

Purpose

Called By

Calls To

Local
Variables

integer

character

Global
Variables

integer

none; operates on global variables

no formal values are returned; outputs are written directly to the output file.

To map damage to each trunk/path record, replacing the long series of span indices
with a string of evaluated 0/1 values that indicate whether the path is damaged or
functional for each damage vector, and to generate an output file.

main{)

none

i, :
length
trkl
trk2
swl
sw2
dmgl
dmg2
num_spans
min_spans
max_spans
tot_spans
dead
count
num_path
loop

line[]
directline[]
tmpl[]
tmp2[]
span[]

direction
damage_vec

general loop count variables
the string length of a pathf ile line
the number of trunks in the A ->Z direction
the number of trunks in the Z ->A direction
the originating path endpoint
the terminating path endpoint
originating switch endpoint damage value, 0/1
terminating switch endpoint damage value, 0/1
the number of spans in a path record
the number of spans in the shortest path in the pathfile
the number of spans in the longest path in the pathfile
the sum of the values of num_spans for all paths
toggle for value of switch endpoint damage, 0/1
the current record number of the output file, linkf ile
the current record number for the input trunk/path file
loop count variable for reading variable number of spans for each
path

temporarily holds a line of input from the trunk/path file
temporarily holds a line of output for the qlink file
temporarily holds originating switch endpoint damage value , 0/1
temporarily holds terminating switch endpoint damage value, 0/1
temporarily holds span damage vector

indicates use of bi-directional (0) or one-way (1) trunk groups
specifies number of damage vectors in each damaged switch and
span file record

3-88

Algorithmic
Description This function processes the trunk/path file record-by-record, loading the path

endpoints and the number of trunks.
In order to evaluate the effect of the ntn damage vector on a path, the following
algorithm is executed: for each path endpoint, this function, looks up the ntn damage
vector in the list of damaged switches. If either switch endpoint is damaged, the entire
path is damaged; if not, the function evaluates each span in the path record. For each
span, this function , look up the ntn damage vector in the damaged span file. If the span
is damaged, the entire path is damaged; if not, this function evaluates the next span in
the path for damage. If both switch endpoints and all of the spans in a path are
undamaged, then the path is undamaged; if at least one part of the path is damaged,
the entire path is damaged. Results are printed directly to the linkf ile output file.' If
one-way trunk groups are being employed, this function will print two qlink output
records-one for each direction.

3-89

3.12.5 closefiies function mklink module

Inputs none

Outputs
global

returns

Purpose

Called By

Calls To

Local
Variables

Global
Variables

Algorithmic
Description

file *pathf ile points to the file that contains combined the physical
paths and trunk sizes between switch pairs

*switchf ile points to file that describes damage to the backbone
network switches

*spanf ile points to a file that describes damage to the backbone
network spans

*linkf ile output QTCM link file

no formal values are returned

To close path, switch and span input files and the QTCM link output file.

main()

none

none

none

This function closes the files whose names are pointed to by the following pointers:
pathfile, switchfile, spanfile and linkf ile, in the order given.

3-90

Appendix A: ICF File Format Descriptions

The OMNCS maintains information regarding the IEC networks in a format based on an indexed
chained format (ICF). The TAMI model requires this data to be converted into a format for use in TAMI
analysis. Four of the modules concern themselves with re-arranging the ICF data files into TAMI data files:
span_make, array_make, mk_ncam_path and array_make. This TAMI data Structure more readily
lends itself to the type of processing performed in TAMI. The following is a brief discussion of the ICF
format.

ICF NETWORK DATA FILE FORMAT

The purpose of this file format is to specify a structure that ensures a common data input for
various network simulation models. The file format is based on an indexed chained format (ICF). All raw
network data will be converted into ICF. The ICF consists of data files cross indexed in order to provide
fast disk access. This format allows coherent logical subsets of the network data to be quickly and easily
loaded into simulation models. Thus, every model's data input will be standardized.

The ICF representation of each network consists of four files: node data file, link data file, CG data
file, and a path data file. The damage and routing files for each network will not be in ICF.

Each file has a header record which identifies the network and the ICF file. The headers have the
format XXX <File> where XXX is the network (FPS for FPSC, FCA for FCAP, MCI for MCI, and SPR for
Sprint). <File> can be "link", "path", "trnk" and "node" for the link, pid, eg or node files, respectively. The
length of the header record is the same length as the other records in that file.

The following sections will detail each file with an example.

NODE DATA FILE: Sorted by node index and CLLI
All fields are left justified.
All records end with a carriage return.

The node data file contains the assets of the network.

Node
idx

14

123
125
134

an
code

Cll

BLTMD023
CHCIL009
KANM0008

Link
Head

14

11
13
31

Link
Tail

14

12
30
31

V
Cd.

14

1234
3343
2334

H
Cd.

14

4567
1233
2445

Extra
(Reserved)

C33

Total record size = 65 bytes

LINK DATA FILE: Sorted by link idx
All fields are left justified.
All records end with a carriage return.

A-1

The link data file contains the physical connections in the network. The type of link is also
represented. The link head from the node data file points to the first record in a block of records. The link
tail references the last block.

In this example, node 123 (BLTMD023) is connected to 125 (123 <-> 125); 123 <-> 456; 123 <->
23; 123 <-> 654; 123 <-> 230.

Link
idx

Type
Con.

Node lype Node
Idx

Type
Con.

Node
Idx

Type
Con.

Node
Idx Idx Con.

14 14 Cl 14 Cl 14 Cl 14 Cl

456

223
211

D

T
W

23

211
1111

G

T
W

«
* r

i
CM

R

T
W

11
12

125
230

D
D
Y
N

13
14

4566
32

•

Total record size = 25 bytes

Link Types

blank Undefined
C (MCI) Cable
D Digital T-Carrier
E Digital Zero Loss trunks
G Analog Zero Loss trunks
1 Analog Satellite
L Analog L-Carrier L3, L4, L5
N Analog N-Carrier
P Undefined Assumed inter-building link (used in AT&T data)
R Analog Radio systems
T Analog Coaxial Systems T4
U Undefined Hybrids
V Digital Generic Future Digital Technology
w Digital Fiber Optic
Y Digital Radio Systems
z Digital Leased Digital Capacity

CG DATA FILE Sorted by CG idx
All fields are left justified.
All records end with a carriage return.

The CG data file contains the logical connections of the network. The path head points to the first
record in a block of records in the path data file. The path tail references the last block. These records
detail the physical paths that comprise the CG. Node A and node Z reference the node data file, which are
the node end points of the trunk group. The TRK qty specifies the number of trunks in a trunk group.
The type identifies the grade of service of the CG, and the dir field specifies the direction of the CG trunk.

A-2

GG
Idx

Path
Head

Path
Tail

Node A
Idx

NodeZ
Idx

TRK
Qtv

Dir Type Extra
(Reserved)

15 16 16 14 14 14 a C2 C6

1
2
3

32
34
38

33
37
34

123
125
125

125
140
140

23
21
12

6
A
Z

DN
AF
PH

Total record size = 39 bytes

CG Types:

rr
PH
AF
DN

DIRECTION:

Intermachine Trunk
Primary High Usage
Alternate Final
Dynamic Nonhierarchial

B
A
Z
blank Bi-directional

Bi-directional
From A to Z
From Z to A

PATH DATA FILE: Sorted by Path idx
All fields are left justified.
All records end with a carriage return.

In! KE da!ffNe HCOnt5inS the paths and the nodes of a CG- For examP'e CG idx 1 contains only one path, pid no. 1 and it is comprised of the nodes:

123 o 134 o 231 ^ 12 o 16 o 24 o 46 o 25 o 55 <-> 42 <-> 223 o 456 o 125.

CG idx 2 has three paths, pid nos. 2, 3, and 4.

CG idx 3 has one path, pid no. 5.

A-3

Path
Idx

Pid
No.

OG
Idx

Node
Idx

Node
Idx

Node
Idx

Node
Idx

Node
Idx

Node
Idx

Node
Idx

16 15 15 14 14 14 14 14 14 14

32
33
34
35
36
37
38

1
1
2
3
3
4
5

1
1
2
2
2
2
3

123
25
125
125
123
125
125

134
55
140
156
140
234
260

231
42

312

140
140

12
223

312

16
456

1234

24
125

123

46

346

Total record size = 45 bytes

A-4

Appendix B: User-Defined Utility Functions

Functions that are repeatedly utilized by more than one module have been placed in this appendix in
order to make them readily available. These "utility" functions are divided into two groups:

1) Function calls repeatedly coded into various modules
fget()
char_comp()

2) Function calls included in include "fileio.c":
parse()
parse_int()
getline()
fopenfile()

B-1

fget function

Inputs
integer

long
integer

character

Outputs

returns

Purpose

Local
Variables

Global
Variables

Algorithmic
Description

fp
num

pos

data

integer

a pointer to a file, equivalent to type FILE
indicates the number of bytes to read from the current position

indicates a position within the file pointed to by fp

the buffer to hold data read from the file

returns the number of bytes read, or -l if error

This function reads a specified number of characters into a string buffer from a given
position within the input file.

none

none

This utility I/O function uses the <stdio. h> function, f seek (), to set the file pointer
fp to position pos, the position of the first byte to be read. The function then uses
f read () to read num bytes into buffer string data. If there is an error, a value of -l is
returned; otherwise, the return value specifies the number of bytes read.

B-2

char_comp function

Inputs
character

Outputs
returns

Purpose

Local
Variables

*cmpl

*cmp2

integer

points to the first string passed into char_comp () for
comparison
points to the second string passed into char_comp () for
comparison

this function returns a 0 if the two strings are equal, and returns a
non-zero if they are different

To compare two character strings, for use in sorting (qsort ()) and searching
(bsearch())

none

Global
Variables none

Algorithmic
Description This function is used by bsearch () and qsort () to compare two strings. The

arguments cmpi, cmp2 are passed into the standard 'C strcmp function, and the
result is used as the char_comp () -s return value. The result is 0 if cmpi=cmp2, and
non-zero otherwise.

B-3

file *fopenfile(filename, type) fileio.c

This utility function is a simple modification of the standard 'C f open function. It opens the passed in
filename and checks for an error in the file. If an error exists the function is exited.

void parse(start, num, buffer, rtn) fileio.c

This utility function reads num characters from the input character string buffer starting at position start
and directs the output to the character string rtn.

int parse_int(start, num, buffer) fileio.c

This utility function reads num characters from the input character string buffer starting at position start
and returns the integer value of the characters

int getline(fildes, buf) fileio.c

This utility function reads from the file f ildes until the first end-of-line character is reached, and directs
the output to the buffer buf

B-4

List of Acronyms

AT&T American Telephone & Telegraph
CSF Cumulative Distribution Function
IEC Inter-Exchange Carrier
ICF Indexed Chain Format
LEC Local Exchange Carrier
MCI MCI Telecommunication Corporation
NCAM Network Connectivity Analysis Model
NCS National Communication System
NLP National Level NS/EP Telecommunications Program
NS/EP National Security and Emergency Preparedness
NT National Communications System (OMNCS) Office of Technology and Standards
OMNCS Office of the Manager, National Communication System
PSN Public Switched Network
QTCM Queuing Traffic Congestion Model
TAMI Traffic Analysis by Method of Iteration
TG Trunk Group

List of References

1. OTCM Software Documentation, Volume I: Programmer's Manual. National
Communications System, November 1990.

2. Network Analysis Sensitivity Report, National Communications System,
March 1994.

3. Network Analysis Report, National Communications System, June 1994.

4. Infrastructure Damage Assessment/Communication Assessment Model.
Programmer's Manual, National Communications System, October 1990.

5. Network-Level EMP Effects Evaluation On The Primary PSN Toll-Level
Networks. National Communications System, June 1993.

6. Network Congestion Analysis Report, National Communications System,
November 1992.

